24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202 | class OpenVINORerank(BaseNodePostprocessor):
model_id_or_path: str = Field(description="Huggingface model id or local path.")
top_n: int = Field(description="Number of nodes to return sorted by score.")
keep_retrieval_score: bool = Field(
default=False,
description="Whether to keep the retrieval score in metadata.",
)
_model: Any = PrivateAttr()
_tokenizer: Any = PrivateAttr()
def __init__(
self,
top_n: int = 3,
model_id_or_path: str = "BAAI/bge-reranker-large",
device: Optional[str] = "auto",
model_kwargs: Dict[str, Any] = {},
keep_retrieval_score: Optional[bool] = False,
):
device = infer_torch_device() if device is None else device
super().__init__(
top_n=top_n,
model_id_or_path=model_id_or_path,
device=device,
keep_retrieval_score=keep_retrieval_score,
)
try:
from huggingface_hub import HfApi
except ImportError as e:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with: "
"`pip install -U huggingface_hub`."
) from e
def require_model_export(
model_id: str, revision: Any = None, subfolder: Any = None
) -> bool:
model_dir = Path(model_id)
if subfolder is not None:
model_dir = model_dir / subfolder
if model_dir.is_dir():
return (
not (model_dir / "openvino_model.xml").exists()
or not (model_dir / "openvino_model.bin").exists()
)
hf_api = HfApi()
try:
model_info = hf_api.model_info(model_id, revision=revision or "main")
normalized_subfolder = (
None if subfolder is None else Path(subfolder).as_posix()
)
model_files = [
file.rfilename
for file in model_info.siblings
if normalized_subfolder is None
or file.rfilename.startswith(normalized_subfolder)
]
ov_model_path = (
"openvino_model.xml"
if subfolder is None
else f"{normalized_subfolder}/openvino_model.xml"
)
return (
ov_model_path not in model_files
or ov_model_path.replace(".xml", ".bin") not in model_files
)
except Exception:
return True
if require_model_export(model_id_or_path):
# use remote model
self._model = OVModelForSequenceClassification.from_pretrained(
model_id_or_path, export=True, device=device, **model_kwargs
)
else:
# use local model
self._model = OVModelForSequenceClassification.from_pretrained(
model_id_or_path, device=device, **model_kwargs
)
self._tokenizer = AutoTokenizer.from_pretrained(model_id_or_path)
@classmethod
def class_name(cls) -> str:
return "OpenVINORerank"
@staticmethod
def create_and_save_openvino_model(
model_name_or_path: str,
output_path: str,
export_kwargs: Optional[dict] = None,
) -> None:
export_kwargs = export_kwargs or {}
model = OVModelForSequenceClassification.from_pretrained(
model_name_or_path, export=True, compile=False, **export_kwargs
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model.save_pretrained(output_path)
tokenizer.save_pretrained(output_path)
print(
f"Saved OpenVINO model to {output_path}. Use it with "
f"`embed_model = OpenVINORerank(model='{output_path}')`."
)
def _postprocess_nodes(
self,
nodes: List[NodeWithScore],
query_bundle: Optional[QueryBundle] = None,
) -> List[NodeWithScore]:
dispatcher.event(
ReRankStartEvent(
query=query_bundle,
nodes=nodes,
top_n=self.top_n,
model_name=self.model_id_or_path,
)
)
if query_bundle is None:
raise ValueError("Missing query bundle in extra info.")
if len(nodes) == 0:
return []
nodes_text_list = [
str(node.node.get_content(metadata_mode=MetadataMode.EMBED))
for node in nodes
]
with self.callback_manager.event(
CBEventType.RERANKING,
payload={
EventPayload.NODES: nodes,
EventPayload.MODEL_NAME: self.model_id_or_path,
EventPayload.QUERY_STR: query_bundle.query_str,
EventPayload.TOP_K: self.top_n,
},
) as event:
query_pairs = [[query_bundle.query_str, text] for text in nodes_text_list]
length = self._model.request.inputs[0].get_partial_shape()[1]
if length.is_dynamic:
input_tensors = self._tokenizer(
query_pairs, padding=True, truncation=True, return_tensors="pt"
)
else:
input_tensors = self._tokenizer(
query_pairs,
padding="max_length",
max_length=length.get_length(),
truncation=True,
return_tensors="pt",
)
outputs = self._model(**input_tensors, return_dict=True)
logits = outputs[0]
if logits.shape[1] == 1:
scores = 1 / (1 + np.exp(-logits.flatten()))
else:
exp_logits = np.exp(logits)
scores = exp_logits[:, 1] / np.sum(exp_logits, axis=1)
assert len(scores) == len(nodes)
for node, score in zip(nodes, scores):
if self.keep_retrieval_score:
# keep the retrieval score in metadata
node.node.metadata["retrieval_score"] = node.score
node.score = score
new_nodes = sorted(nodes, key=lambda x: -x.score if x.score else 0)[
: self.top_n
]
event.on_end(payload={EventPayload.NODES: new_nodes})
dispatcher.event(ReRankEndEvent(nodes=new_nodes[: self.top_n]))
return new_nodes
|