Skip to content

Llm rerank

Node PostProcessor module.

LLMRerank #

Bases: BaseNodePostprocessor

LLM-based reranker.

Parameters:

Name Type Description Default
top_n int

Top N nodes to return.

required
choice_select_prompt BasePromptTemplate

Choice select prompt.

required
choice_batch_size int

Batch size for choice select.

required
llm LLM

The LLM to rerank with.

required
Source code in llama-index-core/llama_index/core/postprocessor/llm_rerank.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
class LLMRerank(BaseNodePostprocessor):
    """LLM-based reranker."""

    top_n: int = Field(description="Top N nodes to return.")
    choice_select_prompt: SerializeAsAny[BasePromptTemplate] = Field(
        description="Choice select prompt."
    )
    choice_batch_size: int = Field(description="Batch size for choice select.")
    llm: LLM = Field(description="The LLM to rerank with.")

    _format_node_batch_fn: Callable = PrivateAttr()
    _parse_choice_select_answer_fn: Callable = PrivateAttr()

    def __init__(
        self,
        llm: Optional[LLM] = None,
        choice_select_prompt: Optional[BasePromptTemplate] = None,
        choice_batch_size: int = 10,
        format_node_batch_fn: Optional[Callable] = None,
        parse_choice_select_answer_fn: Optional[Callable] = None,
        top_n: int = 10,
    ) -> None:
        choice_select_prompt = choice_select_prompt or DEFAULT_CHOICE_SELECT_PROMPT

        llm = llm or Settings.llm

        super().__init__(
            llm=llm,
            choice_select_prompt=choice_select_prompt,
            choice_batch_size=choice_batch_size,
            top_n=top_n,
        )
        self._format_node_batch_fn = (
            format_node_batch_fn or default_format_node_batch_fn
        )
        self._parse_choice_select_answer_fn = (
            parse_choice_select_answer_fn or default_parse_choice_select_answer_fn
        )

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {"choice_select_prompt": self.choice_select_prompt}

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "choice_select_prompt" in prompts:
            self.choice_select_prompt = prompts["choice_select_prompt"]

    @classmethod
    def class_name(cls) -> str:
        return "LLMRerank"

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        if query_bundle is None:
            raise ValueError("Query bundle must be provided.")
        if len(nodes) == 0:
            return []

        initial_results: List[NodeWithScore] = []
        for idx in range(0, len(nodes), self.choice_batch_size):
            nodes_batch = [
                node.node for node in nodes[idx : idx + self.choice_batch_size]
            ]

            query_str = query_bundle.query_str
            fmt_batch_str = self._format_node_batch_fn(nodes_batch)
            # call each batch independently
            raw_response = self.llm.predict(
                self.choice_select_prompt,
                context_str=fmt_batch_str,
                query_str=query_str,
            )

            raw_choices, relevances = self._parse_choice_select_answer_fn(
                raw_response, len(nodes_batch)
            )
            choice_idxs = [int(choice) - 1 for choice in raw_choices]
            choice_nodes = [nodes_batch[idx] for idx in choice_idxs]
            relevances = relevances or [1.0 for _ in choice_nodes]
            initial_results.extend(
                [
                    NodeWithScore(node=node, score=relevance)
                    for node, relevance in zip(choice_nodes, relevances)
                ]
            )

        return sorted(initial_results, key=lambda x: x.score or 0.0, reverse=True)[
            : self.top_n
        ]