Skip to content

NER PII

Node PostProcessor module.

NERPIINodePostprocessor #

Bases: BaseNodePostprocessor

NER PII Node processor.

Uses a HF transformers model.

Parameters:

Name Type Description Default
pii_node_info_key str
'__pii_node_info__'
Source code in llama-index-core/llama_index/core/postprocessor/pii.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class NERPIINodePostprocessor(BaseNodePostprocessor):
    """NER PII Node processor.

    Uses a HF transformers model.

    """

    pii_node_info_key: str = "__pii_node_info__"

    @classmethod
    def class_name(cls) -> str:
        return "NERPIINodePostprocessor"

    def mask_pii(self, ner: Callable, text: str) -> Tuple[str, Dict]:
        """Mask PII in text."""
        new_text = text
        response = ner(text)
        mapping = {}
        for entry in response:
            entity_group_tag = f"[{entry['entity_group']}_{entry['start']}]"
            new_text = new_text.replace(entry["word"], entity_group_tag).strip()
            mapping[entity_group_tag] = entry["word"]
        return new_text, mapping

    def _postprocess_nodes(
        self,
        nodes: List[NodeWithScore],
        query_bundle: Optional[QueryBundle] = None,
    ) -> List[NodeWithScore]:
        """Postprocess nodes."""
        from transformers import pipeline  # pants: no-infer-dep

        ner = pipeline("ner", grouped_entities=True)

        # swap out text from nodes, with the original node mappings
        new_nodes = []
        for node_with_score in nodes:
            node = node_with_score.node
            new_text, mapping_info = self.mask_pii(
                ner, node.get_content(metadata_mode=MetadataMode.LLM)
            )
            new_node = deepcopy(node)
            new_node.excluded_embed_metadata_keys.append(self.pii_node_info_key)
            new_node.excluded_llm_metadata_keys.append(self.pii_node_info_key)
            new_node.metadata[self.pii_node_info_key] = mapping_info
            new_node.set_content(new_text)
            new_nodes.append(NodeWithScore(node=new_node, score=node_with_score.score))

        return new_nodes

mask_pii #

mask_pii(ner: Callable, text: str) -> Tuple[str, Dict]

Mask PII in text.

Source code in llama-index-core/llama_index/core/postprocessor/pii.py
109
110
111
112
113
114
115
116
117
118
def mask_pii(self, ner: Callable, text: str) -> Tuple[str, Dict]:
    """Mask PII in text."""
    new_text = text
    response = ner(text)
    mapping = {}
    for entry in response:
        entity_group_tag = f"[{entry['entity_group']}_{entry['start']}]"
        new_text = new_text.replace(entry["word"], entity_group_tag).strip()
        mapping[entity_group_tag] = entry["word"]
    return new_text, mapping