Skip to content

Trulens eval packs

TruLensHarmlessPack #

Bases: BaseLlamaPack

The TruLens-Eval Harmless LlamaPack show how to instrument and evaluate your LlamaIndex query engine. It launches starts a logging database and launches a dashboard in the background, builds an index over an input list of nodes, and instantiates and instruments a query engine over that index. It also instantiates the a suite of Harmless evals so that query is logged and evaluated for harmlessness.

Note: Using this LlamaPack requires that your OpenAI and HuggingFace API keys are set via the OPENAI_API_KEY and HUGGINGFACE_API_KEY environment variable.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class TruLensHarmlessPack(BaseLlamaPack):
    """
    The TruLens-Eval Harmless LlamaPack show how to instrument and evaluate your LlamaIndex query
    engine. It launches starts a logging database and launches a dashboard in the background,
    builds an index over an input list of nodes, and instantiates and instruments a query engine
    over that index. It also instantiates the a suite of Harmless evals so that query is logged
    and evaluated for harmlessness.

    Note: Using this LlamaPack requires that your OpenAI and HuggingFace API keys are set via the
    OPENAI_API_KEY and HUGGINGFACE_API_KEY environment variable.
    """

    def __init__(
        self,
        nodes: List[TextNode],
        app_id: str,
        **kwargs: Any,
    ) -> None:
        """
        Initializes a new instance of TruLensEvalPack.

        Args:
            nodes (List[TextNode]): An input list of nodes over which the index
            will be built.
            app_id (str): The application ID for the TruLensEvalPack.
        """
        try:
            from trulens_eval import Feedback, Tru, TruLlama
            from trulens_eval.feedback.provider.openai import OpenAI
        except ImportError:
            raise ImportError(
                "The trulens-eval package could not be found. "
                "Please install with `pip install trulens-eval`."
            )
        self.app_id = app_id
        self._tru = Tru()
        self._tru.run_dashboard()
        self._index = VectorStoreIndex(nodes, **kwargs)
        self._query_engine = self._index.as_query_engine()

        # Initialize provider class
        provider = OpenAI()

        # LLM-based feedback functions
        f_controversiality = Feedback(
            provider.controversiality_with_cot_reasons,
            name="Criminality",
            higher_is_better=False,
        ).on_output()
        f_criminality = Feedback(
            provider.criminality_with_cot_reasons,
            name="Controversiality",
            higher_is_better=False,
        ).on_output()
        f_insensitivity = Feedback(
            provider.insensitivity_with_cot_reasons,
            name="Insensitivity",
            higher_is_better=False,
        ).on_output()
        f_maliciousness = Feedback(
            provider.maliciousness_with_cot_reasons,
            name="Maliciousness",
            higher_is_better=False,
        ).on_output()

        # Moderation feedback functions
        f_hate = Feedback(
            provider.moderation_hate, name="Hate", higher_is_better=False
        ).on_output()
        f_hatethreatening = Feedback(
            provider.moderation_hatethreatening,
            name="Hate/Threatening",
            higher_is_better=False,
        ).on_output()
        f_violent = Feedback(
            provider.moderation_violence, name="Violent", higher_is_better=False
        ).on_output()
        f_violentgraphic = Feedback(
            provider.moderation_violencegraphic,
            name="Violent/Graphic",
            higher_is_better=False,
        ).on_output()
        f_selfharm = Feedback(
            provider.moderation_selfharm, name="Self Harm", higher_is_better=False
        ).on_output()

        harmless_feedbacks = [
            f_controversiality,
            f_criminality,
            f_insensitivity,
            f_maliciousness,
            f_hate,
            f_hatethreatening,
            f_violent,
            f_violentgraphic,
            f_selfharm,
        ]

        self._tru_query_engine = TruLlama(
            self._query_engine, app_id=app_id, feedbacks=harmless_feedbacks
        )

    def get_modules(self) -> Dict[str, Any]:
        """
        Returns a dictionary containing the internals of the LlamaPack.

        Returns:
            Dict[str, Any]: A dictionary containing the internals of the
            LlamaPack.
        """
        return {
            "session": self._tru,
            "index": self._index,
            "tru_query_engine": self._tru_query_engine,
            "query_engine": self._query_engine,
        }

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """
        Runs queries against the index.

        Returns:
            Any: A response from the query engine.
        """
        with self._tru_query_engine as _:
            return self._query_engine.query(*args, **kwargs)

get_modules #

get_modules() -> Dict[str, Any]

Returns a dictionary containing the internals of the LlamaPack.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: A dictionary containing the internals of the

Dict[str, Any]

LlamaPack.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def get_modules(self) -> Dict[str, Any]:
    """
    Returns a dictionary containing the internals of the LlamaPack.

    Returns:
        Dict[str, Any]: A dictionary containing the internals of the
        LlamaPack.
    """
    return {
        "session": self._tru,
        "index": self._index,
        "tru_query_engine": self._tru_query_engine,
        "query_engine": self._query_engine,
    }

run #

run(*args: Any, **kwargs: Any) -> Any

Runs queries against the index.

Returns:

Name Type Description
Any Any

A response from the query engine.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
232
233
234
235
236
237
238
239
240
def run(self, *args: Any, **kwargs: Any) -> Any:
    """
    Runs queries against the index.

    Returns:
        Any: A response from the query engine.
    """
    with self._tru_query_engine as _:
        return self._query_engine.query(*args, **kwargs)

TruLensHelpfulPack #

Bases: BaseLlamaPack

The TruLens-Eval Helpful LlamaPack show how to instrument and evaluate your LlamaIndex query engine. It launches starts a logging database and launches a dashboard in the background, builds an index over an input list of nodes, and instantiates and instruments a query engine over that index. It also instantiates the a suite of Helpful evals so that query is logged and evaluated for helpfulness.

Note: Using this LlamaPack requires that your OpenAI and HuggingFace API keys are set via the OPENAI_API_KEY and HUGGINGFACE_API_KEY environment variable.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
class TruLensHelpfulPack(BaseLlamaPack):
    """
    The TruLens-Eval Helpful LlamaPack show how to instrument and evaluate your LlamaIndex query
    engine. It launches starts a logging database and launches a dashboard in the background,
    builds an index over an input list of nodes, and instantiates and instruments a query engine
    over that index. It also instantiates the a suite of Helpful evals so that query is logged
    and evaluated for helpfulness.

    Note: Using this LlamaPack requires that your OpenAI and HuggingFace API keys are set via the
    OPENAI_API_KEY and HUGGINGFACE_API_KEY environment variable.
    """

    def __init__(
        self,
        nodes: List[TextNode],
        app_id: str,
        **kwargs: Any,
    ) -> None:
        """
        Initializes a new instance of TruLensEvalPack.

        Args:
            nodes (List[TextNode]): An input list of nodes over which the index
            will be built.
            app_id (str): The application ID for the TruLensEvalPack.
        """
        try:
            from trulens_eval import Feedback, Tru, TruLlama
            from trulens_eval.feedback.provider.hugs import Huggingface
            from trulens_eval.feedback.provider.openai import OpenAI
        except ImportError:
            raise ImportError(
                "The trulens-eval package could not be found. "
                "Please install with `pip install trulens-eval`."
            )
        self.app_id = app_id
        self._tru = Tru()
        self._tru.run_dashboard()
        self._index = VectorStoreIndex(nodes, **kwargs)
        self._query_engine = self._index.as_query_engine()

        # Initialize provider class
        provider = OpenAI()

        hugs_provider = Huggingface()

        # LLM-based feedback functions
        f_coherence = Feedback(
            provider.coherence_with_cot_reasons, name="Coherence"
        ).on_output()
        f_input_sentiment = Feedback(
            provider.sentiment_with_cot_reasons, name="Input Sentiment"
        ).on_input()
        f_output_sentiment = Feedback(
            provider.sentiment_with_cot_reasons, name="Output Sentiment"
        ).on_output()
        f_langmatch = Feedback(
            hugs_provider.language_match, name="Language Match"
        ).on_input_output()

        helpful_feedbacks = [
            f_coherence,
            f_input_sentiment,
            f_output_sentiment,
            f_langmatch,
        ]

        self._tru_query_engine = TruLlama(
            self._query_engine, app_id=app_id, feedbacks=helpful_feedbacks
        )

    def get_modules(self) -> Dict[str, Any]:
        """
        Returns a dictionary containing the internals of the LlamaPack.

        Returns:
            Dict[str, Any]: A dictionary containing the internals of the
            LlamaPack.
        """
        return {
            "session": self._tru,
            "index": self._index,
            "tru_query_engine": self._tru_query_engine,
            "query_engine": self._query_engine,
        }

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """
        Runs queries against the index.

        Returns:
            Any: A response from the query engine.
        """
        with self._tru_query_engine as _:
            return self._query_engine.query(*args, **kwargs)

get_modules #

get_modules() -> Dict[str, Any]

Returns a dictionary containing the internals of the LlamaPack.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: A dictionary containing the internals of the

Dict[str, Any]

LlamaPack.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
def get_modules(self) -> Dict[str, Any]:
    """
    Returns a dictionary containing the internals of the LlamaPack.

    Returns:
        Dict[str, Any]: A dictionary containing the internals of the
        LlamaPack.
    """
    return {
        "session": self._tru,
        "index": self._index,
        "tru_query_engine": self._tru_query_engine,
        "query_engine": self._query_engine,
    }

run #

run(*args: Any, **kwargs: Any) -> Any

Runs queries against the index.

Returns:

Name Type Description
Any Any

A response from the query engine.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
329
330
331
332
333
334
335
336
337
def run(self, *args: Any, **kwargs: Any) -> Any:
    """
    Runs queries against the index.

    Returns:
        Any: A response from the query engine.
    """
    with self._tru_query_engine as _:
        return self._query_engine.query(*args, **kwargs)

TruLensRAGTriadPack #

Bases: BaseLlamaPack

The TruLens-Eval RAG Triad LlamaPack show how to instrument and evaluate your LlamaIndex query engine. It launches starts a logging database and launches a dashboard in the background, builds an index over an input list of nodes, and instantiates and instruments a query engine over that index. It also instantiates the RAG triad (groundedness, context relevance, answer relevance)' so that query is logged and evaluated by this triad for detecting hallucination.

Note: Using this LlamaPack requires that your OpenAI API key is set via the OPENAI_API_KEY environment variable.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
class TruLensRAGTriadPack(BaseLlamaPack):
    """
    The TruLens-Eval RAG Triad LlamaPack show how to instrument and evaluate your LlamaIndex query
    engine. It launches starts a logging database and launches a dashboard in the background,
    builds an index over an input list of nodes, and instantiates and instruments a query engine
    over that index. It also instantiates the RAG triad (groundedness, context relevance, answer relevance)'
    so that query is logged and evaluated by this triad for detecting hallucination.

    Note: Using this LlamaPack requires that your OpenAI API key is set via the
    OPENAI_API_KEY environment variable.
    """

    def __init__(
        self,
        nodes: List[TextNode],
        app_id: str,
        **kwargs: Any,
    ) -> None:
        """
        Initializes a new instance of TruLensEvalPack.

        Args:
            nodes (List[TextNode]): An input list of nodes over which the index
            will be built.
            app_id (str): The application ID for the TruLensEvalPack.
        """
        try:
            from trulens_eval import Feedback, Tru, TruLlama
            from trulens_eval.feedback import Groundedness
            from trulens_eval.feedback.provider.openai import OpenAI
        except ImportError:
            raise ImportError(
                "The trulens-eval package could not be found. "
                "Please install with `pip install trulens-eval`."
            )
        self.app_id = app_id
        self._tru = Tru()
        self._tru.run_dashboard()
        self._index = VectorStoreIndex(nodes, **kwargs)
        self._query_engine = self._index.as_query_engine()

        import numpy as np

        # Initialize provider class
        provider = OpenAI()

        grounded = Groundedness(groundedness_provider=provider)

        # Define a groundedness feedback function
        f_groundedness = (
            Feedback(
                grounded.groundedness_measure_with_cot_reasons, name="Groundedness"
            )
            .on(TruLlama.select_source_nodes().node.text.collect())
            .on_output()
            .aggregate(grounded.grounded_statements_aggregator)
        )

        # Question/answer relevance between overall question and answer.
        f_qa_relevance = Feedback(
            provider.relevance, name="Answer Relevance"
        ).on_input_output()

        # Question/statement relevance between question and each context chunk.
        f_context_relevance = (
            Feedback(provider.qs_relevance, name="Context Relevance")
            .on_input()
            .on(TruLlama.select_source_nodes().node.text.collect())
            .aggregate(np.mean)
        )

        feedbacks = [f_groundedness, f_qa_relevance, f_context_relevance]

        self._tru_query_engine = TruLlama(
            self._query_engine, app_id=app_id, feedbacks=feedbacks
        )

    def get_modules(self) -> Dict[str, Any]:
        """
        Returns a dictionary containing the internals of the LlamaPack.

        Returns:
            Dict[str, Any]: A dictionary containing the internals of the
            LlamaPack.
        """
        return {
            "session": self._tru,
            "index": self._index,
            "tru_query_engine": self._tru_query_engine,
            "query_engine": self._query_engine,
        }

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """
        Runs queries against the index.

        Returns:
            Any: A response from the query engine.
        """
        with self._tru_query_engine as _:
            return self._query_engine.query(*args, **kwargs)

get_modules #

get_modules() -> Dict[str, Any]

Returns a dictionary containing the internals of the LlamaPack.

Returns:

Type Description
Dict[str, Any]

Dict[str, Any]: A dictionary containing the internals of the

Dict[str, Any]

LlamaPack.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def get_modules(self) -> Dict[str, Any]:
    """
    Returns a dictionary containing the internals of the LlamaPack.

    Returns:
        Dict[str, Any]: A dictionary containing the internals of the
        LlamaPack.
    """
    return {
        "session": self._tru,
        "index": self._index,
        "tru_query_engine": self._tru_query_engine,
        "query_engine": self._query_engine,
    }

run #

run(*args: Any, **kwargs: Any) -> Any

Runs queries against the index.

Returns:

Name Type Description
Any Any

A response from the query engine.

Source code in llama-index-packs/llama-index-packs-trulens-eval-packs/llama_index/packs/trulens_eval_packs/base.py
104
105
106
107
108
109
110
111
112
def run(self, *args: Any, **kwargs: Any) -> Any:
    """
    Runs queries against the index.

    Returns:
        Any: A response from the query engine.
    """
    with self._tru_query_engine as _:
        return self._query_engine.query(*args, **kwargs)