37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164 | class Neo4jQueryEnginePack(BaseLlamaPack):
"""Neo4j Query Engine pack."""
def __init__(
self,
username: str,
password: str,
url: str,
database: str,
docs: List[Document],
query_engine_type: Optional[Neo4jQueryEngineType] = None,
**kwargs: Any,
) -> None:
"""Init params."""
neo4j_graph_store = Neo4jGraphStore(
username=username,
password=password,
url=url,
database=database,
)
neo4j_storage_context = StorageContext.from_defaults(
graph_store=neo4j_graph_store
)
# define LLM
self.llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
Settings.llm = self.llm
neo4j_index = KnowledgeGraphIndex.from_documents(
documents=docs,
storage_context=neo4j_storage_context,
max_triplets_per_chunk=10,
include_embeddings=True,
)
# create node parser to parse nodes from document
node_parser = SentenceSplitter(chunk_size=512)
# use transforms directly
nodes = node_parser(docs)
print(f"loaded nodes with {len(nodes)} nodes")
# based on the nodes, create index
vector_index = VectorStoreIndex(nodes=nodes)
if query_engine_type == Neo4jQueryEngineType.KG_KEYWORD:
# KG keyword-based entity retrieval
self.query_engine = neo4j_index.as_query_engine(
# setting to false uses the raw triplets instead of adding the text from the corresponding nodes
include_text=False,
retriever_mode="keyword",
response_mode="tree_summarize",
)
elif query_engine_type == Neo4jQueryEngineType.KG_HYBRID:
# KG hybrid entity retrieval
self.query_engine = neo4j_index.as_query_engine(
include_text=True,
response_mode="tree_summarize",
embedding_mode="hybrid",
similarity_top_k=3,
explore_global_knowledge=True,
)
elif query_engine_type == Neo4jQueryEngineType.RAW_VECTOR:
# Raw vector index retrieval
self.query_engine = vector_index.as_query_engine()
elif query_engine_type == Neo4jQueryEngineType.RAW_VECTOR_KG_COMBO:
from llama_index.core.query_engine import RetrieverQueryEngine
# create neo4j custom retriever
neo4j_vector_retriever = VectorIndexRetriever(index=vector_index)
neo4j_kg_retriever = KGTableRetriever(
index=neo4j_index, retriever_mode="keyword", include_text=False
)
neo4j_custom_retriever = CustomRetriever(
neo4j_vector_retriever, neo4j_kg_retriever
)
# create neo4j response synthesizer
neo4j_response_synthesizer = get_response_synthesizer(
response_mode="tree_summarize"
)
# Custom combo query engine
self.query_engine = RetrieverQueryEngine(
retriever=neo4j_custom_retriever,
response_synthesizer=neo4j_response_synthesizer,
)
elif query_engine_type == Neo4jQueryEngineType.KG_QE:
# using KnowledgeGraphQueryEngine
from llama_index.core.query_engine import KnowledgeGraphQueryEngine
self.query_engine = KnowledgeGraphQueryEngine(
storage_context=neo4j_storage_context,
llm=self.llm,
verbose=True,
)
elif query_engine_type == Neo4jQueryEngineType.KG_RAG_RETRIEVER:
# using KnowledgeGraphRAGRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import KnowledgeGraphRAGRetriever
neo4j_graph_rag_retriever = KnowledgeGraphRAGRetriever(
storage_context=neo4j_storage_context,
llm=self.llm,
verbose=True,
)
self.query_engine = RetrieverQueryEngine.from_args(
neo4j_graph_rag_retriever
)
else:
# KG vector-based entity retrieval
self.query_engine = neo4j_index.as_query_engine()
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {"llm": self.llm, "query_engine": self.query_engine}
def run(self, *args: Any, **kwargs: Any) -> Any:
"""Run the pipeline."""
return self.query_engine.query(*args, **kwargs)
|