Skip to content

Gradio react agent chatbot

GradioReActAgentPack #

Bases: BaseLlamaPack

Gradio chatbot to chat with a ReActAgent pack.

Source code in llama-index-packs/llama-index-packs-gradio-react-agent-chatbot/llama_index/packs/gradio_react_agent_chatbot/base.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class GradioReActAgentPack(BaseLlamaPack):
    """Gradio chatbot to chat with a ReActAgent pack."""

    def __init__(
        self,
        tools_list: Optional[List[str]] = list(SUPPORTED_TOOLS.keys()),
        **kwargs: Any,
    ) -> None:
        """Init params."""
        try:
            from ansi2html import Ansi2HTMLConverter
        except ImportError:
            raise ImportError("Please install ansi2html via `pip install ansi2html`")

        tools = []
        for t in tools_list:
            try:
                tools.append(SUPPORTED_TOOLS[t]())
            except KeyError:
                raise KeyError(f"Tool {t} is not supported.")
        self.tools = tools

        self.llm = OpenAI(model="gpt-4-1106-preview", max_tokens=2000)
        self.agent = ReActAgent.from_tools(
            tools=functools.reduce(
                lambda x, y: x.to_tool_list() + y.to_tool_list(), self.tools
            ),
            llm=self.llm,
            verbose=True,
        )

        self.thoughts = ""
        self.conv = Ansi2HTMLConverter()

    def get_modules(self) -> Dict[str, Any]:
        """Get modules."""
        return {"agent": self.agent, "llm": self.llm, "tools": self.tools}

    def _handle_user_message(self, user_message, history):
        """Handle the user submitted message. Clear message box, and append
        to the history.
        """
        return "", [*history, (user_message, "")]

    def _generate_response(
        self, chat_history: List[Tuple[str, str]]
    ) -> Tuple[str, List[Tuple[str, str]]]:
        """Generate the response from agent, and capture the stdout of the
        ReActAgent's thoughts.
        """
        with Capturing() as output:
            response = self.agent.stream_chat(chat_history[-1][0])
        ansi = "\n========\n".join(output)
        html_output = self.conv.convert(ansi)
        for token in response.response_gen:
            chat_history[-1][1] += token
            yield chat_history, str(html_output)

    def _reset_chat(self) -> Tuple[str, str]:
        """Reset the agent's chat history. And clear all dialogue boxes."""
        # clear agent history
        self.agent.reset()
        return "", "", ""  # clear textboxes

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """Run the pipeline."""
        import gradio as gr

        demo = gr.Blocks(
            theme="gstaff/xkcd",
            css="#box { height: 420px; overflow-y: scroll !important}",
        )
        with demo:
            gr.Markdown(
                "# Gradio ReActAgent Powered by LlamaIndex and LlamaHub 🦙\n"
                "This Gradio app is powered by LlamaIndex's `ReActAgent` with\n"
                "OpenAI's GPT-4-Turbo as the LLM. The tools are listed below.\n"
                "## Tools\n"
                "- [ArxivToolSpec](https://llamahub.ai/l/tools-arxiv)\n"
                "- [WikipediaToolSpec](https://llamahub.ai/l/tools-wikipedia)"
            )
            with gr.Row():
                chat_window = gr.Chatbot(
                    label="Message History",
                    scale=3,
                )
                console = gr.HTML(elem_id="box")
            with gr.Row():
                message = gr.Textbox(label="Write A Message", scale=4)
                clear = gr.ClearButton()

            message.submit(
                self._handle_user_message,
                [message, chat_window],
                [message, chat_window],
                queue=False,
            ).then(
                self._generate_response,
                chat_window,
                [chat_window, console],
            )
            clear.click(self._reset_chat, None, [message, chat_window, console])

        demo.launch(server_name="0.0.0.0", server_port=8080)

get_modules #

get_modules() -> Dict[str, Any]

Get modules.

Source code in llama-index-packs/llama-index-packs-gradio-react-agent-chatbot/llama_index/packs/gradio_react_agent_chatbot/base.py
69
70
71
def get_modules(self) -> Dict[str, Any]:
    """Get modules."""
    return {"agent": self.agent, "llm": self.llm, "tools": self.tools}

run #

run(*args: Any, **kwargs: Any) -> Any

Run the pipeline.

Source code in llama-index-packs/llama-index-packs-gradio-react-agent-chatbot/llama_index/packs/gradio_react_agent_chatbot/base.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def run(self, *args: Any, **kwargs: Any) -> Any:
    """Run the pipeline."""
    import gradio as gr

    demo = gr.Blocks(
        theme="gstaff/xkcd",
        css="#box { height: 420px; overflow-y: scroll !important}",
    )
    with demo:
        gr.Markdown(
            "# Gradio ReActAgent Powered by LlamaIndex and LlamaHub 🦙\n"
            "This Gradio app is powered by LlamaIndex's `ReActAgent` with\n"
            "OpenAI's GPT-4-Turbo as the LLM. The tools are listed below.\n"
            "## Tools\n"
            "- [ArxivToolSpec](https://llamahub.ai/l/tools-arxiv)\n"
            "- [WikipediaToolSpec](https://llamahub.ai/l/tools-wikipedia)"
        )
        with gr.Row():
            chat_window = gr.Chatbot(
                label="Message History",
                scale=3,
            )
            console = gr.HTML(elem_id="box")
        with gr.Row():
            message = gr.Textbox(label="Write A Message", scale=4)
            clear = gr.ClearButton()

        message.submit(
            self._handle_user_message,
            [message, chat_window],
            [message, chat_window],
            queue=False,
        ).then(
            self._generate_response,
            chat_window,
            [chat_window, console],
        )
        clear.click(self._reset_chat, None, [message, chat_window, console])

    demo.launch(server_name="0.0.0.0", server_port=8080)