162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375 | class FinanceChatPack(BaseLlamaPack):
def __init__(
self,
polygon_api_key: str,
finnhub_api_key: str,
alpha_vantage_api_key: str,
newsapi_api_key: str,
openai_api_key: str,
postgres_db_uri: str,
gpt_model_name: str = "gpt-4-0613",
):
llm = OpenAI(temperature=0, model=gpt_model_name, api_key=openai_api_key)
self.db_tool_spec = SQLDatabaseToolSpec(uri=postgres_db_uri)
self.fin_tool_spec = FinanceAgentToolSpec(
polygon_api_key, finnhub_api_key, alpha_vantage_api_key, newsapi_api_key
)
self.db_table_info = self.db_tool_spec.get_table_info()
prefix_messages = self.construct_prefix_db_message(self.db_table_info)
# add some role play in the system .
database_agent = OpenAIAgent.from_tools(
[
tool
for tool in self.db_tool_spec.to_tool_list()
if tool.metadata.name == "run_sql_query"
],
prefix_messages=prefix_messages,
llm=llm,
verbose=True,
)
database_agent_tool = QueryEngineTool.from_defaults(
database_agent,
name="database_agent",
description=""""
This agent analyzes a text query and add further explanations and thoughts to help a data scientist who has access to following tables:
{table_info}
Be concise and do not lose any information about original query while passing to the data scientist.
""",
)
fin_api_agent = OpenAIAgent.from_tools(
self.fin_tool_spec.to_tool_list(),
system_prompt=f"""
You are a helpful AI financial assistant designed to understand the intent of the user query and then use relevant tools/apis to help answer it.
You can use more than one tool/api only if needed, but final response should be concise and relevant. If you are not able to find
relevant tool/api, respond respectfully suggesting that you don't know. Think step by step""",
llm=llm,
verbose=True,
)
fin_api_agent_tool = QueryEngineTool.from_defaults(
fin_api_agent,
name="fin_api_agent",
description=f"""
This agent has access to another agent which can access certain open APIs to provide information based on user query.
Analyze the query and add any information if needed which can help to decide which API to call.
Be concise and do not lose any information about original query.
""",
)
self.fin_hierarchical_agent = OpenAIAgent.from_tools(
[database_agent_tool, fin_api_agent_tool],
system_prompt="""
You are a specialized financial assistant with access to certain tools which can access open APIs and SP500 companies database containing information on
daily opening price, closing price, high, low, volume, reported earnings, estimated earnings since 2010 to 2023. Before answering query you should check
if the question can be answered via querying the database or using specific open APIs. If you try to find answer via querying database first and it did
not work out, think if you can use other tool APIs available before replying gracefully.
""",
llm=llm,
verbose=True,
)
def construct_prefix_db_message(self, table_info: str) -> str:
system_prompt = f"""
You are a smart data scientist working in a reputed trading firm like Jump Trading developing automated trading algorithms. Take a deep breathe and think
step by step to design queries over a SQL database.
Here is a complete description of tables in SQL database you have access to:
{table_info}
Use responses to past questions also to guide you.
"""
prefix_messages = []
prefix_messages.append(ChatMessage(role="system", content=system_prompt))
prefix_messages.append(
ChatMessage(
role="user",
content="What is the average price of Google in the month of July in 2023",
)
)
prefix_messages.append(
ChatMessage(
role="assistant",
content="""
SELECT AVG(close) AS AvgPrice
FROM stock_data
WHERE stock = 'GOOG'
AND date >= '2023-07-01'
AND date <= '2023-07-31';
""",
)
)
prefix_messages.append(
ChatMessage(
role="user",
content="Which stock has the maximum % change in any month in 2023",
)
)
# prefix_messages.append(ChatMessage(role="user", content="Which stocks gave more than 2% return constantly in month of July from past 5 years"))
prefix_messages.append(
ChatMessage(
role="assistant",
content="""
WITH MonthlyPrices AS (
SELECT
stock,
EXTRACT(YEAR FROM date) AS year,
EXTRACT(MONTH FROM date) AS month,
FIRST_VALUE(close) OVER (PARTITION BY stock, EXTRACT(YEAR FROM date), EXTRACT(MONTH FROM date) ORDER BY date ASC) AS opening_price,
LAST_VALUE(close) OVER (PARTITION BY stock, EXTRACT(YEAR FROM date), EXTRACT(MONTH FROM date) ORDER BY date ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS closing_price
FROM
stock_data
WHERE
EXTRACT(YEAR FROM date) = 2023
),
PercentageChanges AS (
SELECT
stock,
year,
month,
CASE
WHEN opening_rice IS NULL OR closing_price IS NULL THEN NULL
WHEN opening_price = 0 THEN NULL
ELSE ((closing_price - opening_price) / opening_price) * 100
END AS pct
FROM
MonthlyPrices
)
SELECT *
FROM
PercentageChanges
WHERE pct IS NOT NULL
ORDER BY
pct DESC
LIMIT 1;
""",
)
)
prefix_messages.append(
ChatMessage(
role="user",
content="How many times Microsoft beat earnings estimates in 2022",
)
)
prefix_messages.append(
ChatMessage(
role="assistant",
content="""
SELECT
COUNT(*)
FROM
earnings
WHERE
stock = 'MSFT' AND reported > estimated and EXTRACT(YEAR FROM date) = 2022
""",
)
)
prefix_messages.append(
ChatMessage(
role="user",
content="Which stocks have beaten earnings estimate by more than 1$ consecutively from last 4 reportings?",
)
)
prefix_messages.append(
ChatMessage(
role="assistant",
content="""
WITH RankedEarnings AS(
SELECT
stock,
date,
reported,
estimated,
RANK() OVER (PARTITION BY stock ORDER BY date DESC) as ranking
FROM
earnings
)
SELECT
stock
FROM
RankedEarnings
WHERE
ranking <= 4 AND reported - estimated > 1
GROUP BY
stock
HAVING COUNT(*) = 4
""",
)
)
return prefix_messages
def run(self, query: str):
return self.fin_hierarchical_agent.chat(query)
|