Skip to content

Sentence window

Node parsers.

SentenceWindowNodeParser #

Bases: NodeParser

Sentence window node parser.

Splits a document into Nodes, with each node being a sentence. Each node contains a window from the surrounding sentences in the metadata.

Parameters:

Name Type Description Default
sentence_splitter Optional[Callable]

splits text into sentences

<function split_by_sentence_tokenizer.<locals>.<lambda> at 0x7fd6ec935c60>
include_metadata bool

whether to include metadata in nodes

required
include_prev_next_rel bool

whether to include prev/next relationships

required
window_size int

The number of sentences on each side of a sentence to capture.

3
window_metadata_key str

The metadata key to store the sentence window under.

'window'
original_text_metadata_key str

The metadata key to store the original sentence in.

'original_text'
Source code in llama-index-core/llama_index/core/node_parser/text/sentence_window.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class SentenceWindowNodeParser(NodeParser):
    """Sentence window node parser.

    Splits a document into Nodes, with each node being a sentence.
    Each node contains a window from the surrounding sentences in the metadata.

    Args:
        sentence_splitter (Optional[Callable]): splits text into sentences
        include_metadata (bool): whether to include metadata in nodes
        include_prev_next_rel (bool): whether to include prev/next relationships
    """

    sentence_splitter: Callable[[str], List[str]] = Field(
        default_factory=split_by_sentence_tokenizer,
        description="The text splitter to use when splitting documents.",
        exclude=True,
    )
    window_size: int = Field(
        default=DEFAULT_WINDOW_SIZE,
        description="The number of sentences on each side of a sentence to capture.",
        gt=0,
    )
    window_metadata_key: str = Field(
        default=DEFAULT_WINDOW_METADATA_KEY,
        description="The metadata key to store the sentence window under.",
    )
    original_text_metadata_key: str = Field(
        default=DEFAULT_OG_TEXT_METADATA_KEY,
        description="The metadata key to store the original sentence in.",
    )

    @classmethod
    def class_name(cls) -> str:
        return "SentenceWindowNodeParser"

    @classmethod
    def from_defaults(
        cls,
        sentence_splitter: Optional[Callable[[str], List[str]]] = None,
        window_size: int = DEFAULT_WINDOW_SIZE,
        window_metadata_key: str = DEFAULT_WINDOW_METADATA_KEY,
        original_text_metadata_key: str = DEFAULT_OG_TEXT_METADATA_KEY,
        include_metadata: bool = True,
        include_prev_next_rel: bool = True,
        callback_manager: Optional[CallbackManager] = None,
        id_func: Optional[Callable[[int, Document], str]] = None,
    ) -> "SentenceWindowNodeParser":
        callback_manager = callback_manager or CallbackManager([])

        sentence_splitter = sentence_splitter or split_by_sentence_tokenizer()

        id_func = id_func or default_id_func

        return cls(
            sentence_splitter=sentence_splitter,
            window_size=window_size,
            window_metadata_key=window_metadata_key,
            original_text_metadata_key=original_text_metadata_key,
            include_metadata=include_metadata,
            include_prev_next_rel=include_prev_next_rel,
            callback_manager=callback_manager,
            id_func=id_func,
        )

    def _parse_nodes(
        self,
        nodes: Sequence[BaseNode],
        show_progress: bool = False,
        **kwargs: Any,
    ) -> List[BaseNode]:
        """Parse document into nodes."""
        all_nodes: List[BaseNode] = []
        nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes")

        for node in nodes_with_progress:
            nodes = self.build_window_nodes_from_documents([node])
            all_nodes.extend(nodes)

        return all_nodes

    def build_window_nodes_from_documents(
        self, documents: Sequence[Document]
    ) -> List[BaseNode]:
        """Build window nodes from documents."""
        all_nodes: List[BaseNode] = []
        for doc in documents:
            text = doc.text
            text_splits = self.sentence_splitter(text)
            nodes = build_nodes_from_splits(
                text_splits,
                doc,
                id_func=self.id_func,
            )

            # add window to each node
            for i, node in enumerate(nodes):
                window_nodes = nodes[
                    max(0, i - self.window_size) : min(
                        i + self.window_size + 1, len(nodes)
                    )
                ]

                node.metadata[self.window_metadata_key] = " ".join(
                    [n.text for n in window_nodes]
                )
                node.metadata[self.original_text_metadata_key] = node.text

                # exclude window metadata from embed and llm
                node.excluded_embed_metadata_keys.extend(
                    [self.window_metadata_key, self.original_text_metadata_key]
                )
                node.excluded_llm_metadata_keys.extend(
                    [self.window_metadata_key, self.original_text_metadata_key]
                )

            all_nodes.extend(nodes)

        return all_nodes

build_window_nodes_from_documents #

build_window_nodes_from_documents(documents: Sequence[Document]) -> List[BaseNode]

Build window nodes from documents.

Source code in llama-index-core/llama_index/core/node_parser/text/sentence_window.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def build_window_nodes_from_documents(
    self, documents: Sequence[Document]
) -> List[BaseNode]:
    """Build window nodes from documents."""
    all_nodes: List[BaseNode] = []
    for doc in documents:
        text = doc.text
        text_splits = self.sentence_splitter(text)
        nodes = build_nodes_from_splits(
            text_splits,
            doc,
            id_func=self.id_func,
        )

        # add window to each node
        for i, node in enumerate(nodes):
            window_nodes = nodes[
                max(0, i - self.window_size) : min(
                    i + self.window_size + 1, len(nodes)
                )
            ]

            node.metadata[self.window_metadata_key] = " ".join(
                [n.text for n in window_nodes]
            )
            node.metadata[self.original_text_metadata_key] = node.text

            # exclude window metadata from embed and llm
            node.excluded_embed_metadata_keys.extend(
                [self.window_metadata_key, self.original_text_metadata_key]
            )
            node.excluded_llm_metadata_keys.extend(
                [self.window_metadata_key, self.original_text_metadata_key]
            )

        all_nodes.extend(nodes)

    return all_nodes