Skip to content

Perplexity

Perplexity #

Bases: LLM

Perplexity LLM.

Examples:

pip install llama-index-llms-perplexity

from llama_index.llms.perplexity import Perplexity
from llama_index.core.llms import ChatMessage

pplx_api_key = "your-perplexity-api-key"

llm = Perplexity(
    api_key=pplx_api_key, model="llama-3.1-sonar-small-128k-online", temperature=0.5
)

messages_dict = [
    {"role": "system", "content": "Be precise and concise."},
    {"role": "user", "content": "Tell me 5 sentences about Perplexity."},
]
messages = [ChatMessage(**msg) for msg in messages_dict]

response = llm.chat(messages)
print(str(response))
Source code in llama-index-integrations/llms/llama-index-llms-perplexity/llama_index/llms/perplexity/base.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
class Perplexity(LLM):
    """
    Perplexity LLM.

    Examples:
        `pip install llama-index-llms-perplexity`

        ```python
        from llama_index.llms.perplexity import Perplexity
        from llama_index.core.llms import ChatMessage

        pplx_api_key = "your-perplexity-api-key"

        llm = Perplexity(
            api_key=pplx_api_key, model="llama-3.1-sonar-small-128k-online", temperature=0.5
        )

        messages_dict = [
            {"role": "system", "content": "Be precise and concise."},
            {"role": "user", "content": "Tell me 5 sentences about Perplexity."},
        ]
        messages = [ChatMessage(**msg) for msg in messages_dict]

        response = llm.chat(messages)
        print(str(response))
        ```
    """

    model: str = Field(description="The Perplexity model to use.")
    temperature: float = Field(description="The temperature to use during generation.")
    max_tokens: Optional[int] = Field(
        default=None,
        description="The maximum number of tokens to generate.",
    )
    context_window: Optional[int] = Field(
        default=None,
        description="The context window to use during generation.",
    )
    api_key: str = Field(
        default=None, description="The Perplexity API key.", exclude=True
    )
    api_base: str = Field(
        default="https://api.perplexity.ai",
        description="The base URL for Perplexity API.",
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the Perplexity API."
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries."
    )
    headers: Dict[str, str] = Field(
        default_factory=dict, description="Headers for API requests."
    )

    def __init__(
        self,
        model: str = "llama-3.1-sonar-small-128k-online",
        temperature: float = 0.1,
        max_tokens: Optional[int] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = "https://api.perplexity.ai",
        additional_kwargs: Optional[Dict[str, Any]] = None,
        max_retries: int = 10,
        context_window: Optional[int] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
        **kwargs: Any,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        headers = {
            "accept": "application/json",
            "content-type": "application/json",
            "authorization": f"Bearer {api_key}",
        }
        super().__init__(
            model=model,
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            max_retries=max_retries,
            callback_manager=callback_manager,
            api_key=api_key,
            api_base=api_base,
            headers=headers,
            context_window=context_window,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
            **kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "perplexity_llm"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=(
                self.context_window
                if self.context_window is not None
                else self._get_context_window()
            ),
            num_output=self.max_tokens
            or -1,  # You can replace this with the appropriate value
            is_chat_model=self._is_chat_model(),
            model_name=self.model,
        )

    def _get_context_window(self) -> int:
        # Check https://docs.perplexity.ai/guides/model-cards for latest model information
        model_context_windows = {
            "llama-3.1-sonar-small-128k-online": 127072,
            "llama-3.1-sonar-large-128k-online": 127072,
            "llama-3.1-sonar-huge-128k-online": 127072,
        }
        return model_context_windows.get(
            self.model, 127072
        )  # Default to 127072 tokens if model is not found

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        """Get all data for the request as a dictionary."""
        base_kwargs = {
            "model": self.model,
            "temperature": self.temperature,
        }
        if self.max_tokens is not None:
            base_kwargs["max_tokens"] = self.max_tokens
        return {**base_kwargs, **self.additional_kwargs, **kwargs}

    def _complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        url = f"{self.api_base}/chat/completions"
        messages = [{"role": "user", "content": prompt}]
        if self.system_prompt:
            messages.insert(0, {"role": "system", "content": self.system_prompt})
        payload = {
            "model": self.model,
            "messages": messages,
            **self._get_all_kwargs(**kwargs),
        }
        response = requests.post(url, json=payload, headers=self.headers)
        response.raise_for_status()
        data = response.json()
        return CompletionResponse(
            text=data["choices"][0]["message"]["content"], raw=data
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        return self._complete(prompt, **kwargs)

    def _chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        url = f"{self.api_base}/chat/completions"
        message_dicts = to_openai_message_dicts(messages)
        payload = {
            "model": self.model,
            "messages": message_dicts,
            **self._get_all_kwargs(**kwargs),
        }
        response = requests.post(url, json=payload, headers=self.headers)
        response.raise_for_status()
        data = response.json()
        message = ChatMessage(
            role="assistant", content=data["choices"][0]["message"]["content"]
        )
        return ChatResponse(message=message, raw=data)

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        return self._chat(messages, **kwargs)

    async def _acomplete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        url = f"{self.api_base}/chat/completions"
        messages = [{"role": "user", "content": prompt}]
        if self.system_prompt:
            messages.insert(0, {"role": "system", "content": self.system_prompt})
        payload = {
            "model": self.model,
            "messages": messages,
            **self._get_all_kwargs(**kwargs),
        }
        async with httpx.AsyncClient() as client:
            response = await client.post(url, json=payload, headers=self.headers)
        response.raise_for_status()
        data = response.json()
        return CompletionResponse(
            text=data["choices"][0]["message"]["content"], raw=data
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        return await self._acomplete(prompt, **kwargs)

    async def _achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        url = f"{self.api_base}/chat/completions"
        message_dicts = to_openai_message_dicts(messages)
        payload = {
            "model": self.model,
            "messages": message_dicts,
            **self._get_all_kwargs(**kwargs),
        }
        async with httpx.AsyncClient() as client:
            response = await client.post(url, json=payload, headers=self.headers)
        response.raise_for_status()
        data = response.json()
        message = ChatMessage(
            role="assistant", content=data["choices"][0]["message"]["content"]
        )
        return ChatResponse(message=message, raw=data)

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        return await self._achat(messages, **kwargs)

    def _stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
        url = f"{self.api_base}/chat/completions"
        messages = [{"role": "user", "content": prompt}]
        if self.system_prompt:
            messages.insert(0, {"role": "system", "content": self.system_prompt})
        payload = {
            "model": self.model,
            # "prompt": prompt,
            "messages": messages,
            "stream": True,
            **self._get_all_kwargs(**kwargs),
        }
        print(payload)

        def gen() -> CompletionResponseGen:
            with requests.Session() as session:
                with session.post(
                    url, json=payload, headers=self.headers, stream=True
                ) as response:
                    response.raise_for_status()
                    text = ""
                    for line in response.iter_lines(
                        decode_unicode=True
                    ):  # decode lines to Unicode
                        if line.startswith("data:"):
                            data = json.loads(line[5:])
                            delta = data["choices"][0]["message"]["content"]
                            text += delta
                            yield CompletionResponse(delta=delta, text=text, raw=data)

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        stream_complete_fn = self._stream_complete
        return stream_complete_fn(prompt, **kwargs)

    async def _astream_complete(
        self, prompt: str, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        import aiohttp

        url = f"{self.api_base}/chat/completions"
        messages = [{"role": "user", "content": prompt}]
        if self.system_prompt:
            messages.insert(0, {"role": "system", "content": self.system_prompt})
        payload = {
            "model": self.model,
            "messages": messages,
            "stream": True,
            **self._get_all_kwargs(**kwargs),
        }

        async def gen() -> CompletionResponseAsyncGen:
            async with aiohttp.ClientSession() as session:
                async with session.post(
                    url, json=payload, headers=self.headers
                ) as response:
                    response.raise_for_status()
                    text = ""
                    async for line in response.content:
                        line_text = line.decode("utf-8").strip()
                        if line_text.startswith("data:"):
                            data = json.loads(line_text[5:])
                            delta = data["choices"][0]["message"]["content"]
                            text += delta
                            yield CompletionResponse(delta=delta, text=text, raw=data)

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        return await self._astream_complete(prompt, **kwargs)

    def _stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        url = f"{self.api_base}/chat/completions"
        message_dicts = to_openai_message_dicts(messages)
        payload = {
            "model": self.model,
            "messages": message_dicts,
            "stream": True,
            **self._get_all_kwargs(**kwargs),
        }

        def gen() -> ChatResponseGen:
            content = ""
            with requests.Session() as session:
                with session.post(
                    url, json=payload, headers=self.headers, stream=True
                ) as response:
                    response.raise_for_status()
                    for line in response.iter_lines(
                        decode_unicode=True
                    ):  # decode lines to Unicode
                        if line.startswith("data:"):
                            data = json.loads(line[5:])
                            delta = data["choices"][0]["delta"]["content"]
                            content += delta
                            message = ChatMessage(
                                role="assistant", content=content, raw=data
                            )
                            yield ChatResponse(message=message, delta=delta, raw=data)

        return gen()

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        return self._stream_chat(messages, **kwargs)

    async def _astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        import aiohttp

        url = f"{self.api_base}/chat/completions"
        message_dicts = to_openai_message_dicts(messages)
        payload = {
            "model": self.model,
            "messages": message_dicts,
            "stream": True,
            **self._get_all_kwargs(**kwargs),
        }

        async def gen() -> ChatResponseAsyncGen:
            async with aiohttp.ClientSession() as session:
                async with session.post(
                    url, json=payload, headers=self.headers
                ) as response:
                    response.raise_for_status()
                    content = ""
                    async for line in response.content:
                        line_text = line.decode("utf-8").strip()
                        if line_text.startswith("data:"):
                            data = json.loads(line_text[5:])
                            delta = data["choices"][0]["delta"]["content"]
                            content += delta
                            message = ChatMessage(
                                role="assistant", content=content, raw=data
                            )
                            yield ChatResponse(message=message, delta=delta, raw=data)

        return gen()

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        return await self._astream_chat(messages, **kwargs)