Monsterapi
MonsterLLM #
Bases: OpenAI
Source code in llama-index-integrations/llms/llama-index-llms-monsterapi/llama_index/llms/monsterapi/base.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
model_info
class-attribute
instance-attribute
#
model_info: dict = _fetch_model_details(api_base, api_key)
MonsterAPI LLM.
Monster Deploy enables you to host any vLLM supported large language model (LLM) like Tinyllama, Mixtral, Phi-2 etc as a rest API endpoint on MonsterAPI's cost optimised GPU cloud.
With MonsterAPI's integration in Llama index, you can use your deployed LLM API endpoints to create RAG system or RAG bot for use cases such as: - Answering questions on your documents - Improving the content of your documents - Finding context of importance in your documents
Once deployment is launched use the base_url and api_auth_token once deployment is live and use them below.
Note: When using LLama index to access Monster Deploy LLMs, you need to create a prompt with required template and send compiled prompt as input.
See LLama Index Prompt Template Usage example
section for more details.
see (https://developer.monsterapi.ai/docs/monster-deploy-beta) for more details
Once deployment is launched use the base_url and api_auth_token once deployment is live and use them below.
Note: When using LLama index to access Monster Deploy LLMs, you need to create a prompt with reqhired template and send compiled prompt as input. see section LLama Index Prompt Template
Usage example
for more details.
Examples:
pip install llama-index-llms-monsterapi
-
MonsterAPI Private LLM Deployment use case
from llama_index.llms.monsterapi import MonsterLLM # User monsterAPI Deploy service to launch a deployment # then get api_endpoint and api_auth_token and use them as api_base and api_key respectively. llm = MonsterLLM( model = "whatever is the basemodel used to deploy the llm", api_base="https://ecc7deb6-26e0-419b-a7f2-0deb934af29a.monsterapi.ai", api_key="a0f8a6ba-c32f-4407-af0c-169f1915490c", temperature=0.75, ) response = llm.complete("What is the capital of France?")
-
Monster API General Available LLMs
from llama_index.llms.monsterapi import MonsterLLM llm = MonsterLLM( model="microsoft/Phi-3-mini-4k-instruct" ) response = llm.complete("What is the capital of France?") print(str(response))