Skip to content

Huggingface

HuggingFaceInferenceAPI #

Bases: CustomLLM

Wrapper on the Hugging Face's Inference API.

Overview of the design: - Synchronous uses InferenceClient, asynchronous uses AsyncInferenceClient - chat uses the conversational task: https://huggingface.co/tasks/conversational - complete uses the text generation task: https://huggingface.co/tasks/text-generation

Note: some models that support the text generation task can leverage Hugging Face's optimized deployment toolkit called text-generation-inference (TGI). Use InferenceClient.get_model_status to check if TGI is being used.

Relevant links: - General Docs: https://huggingface.co/docs/api-inference/index - API Docs: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client - Source: https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub/inference

Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
@deprecated(
    "Deprecated in favor of `HuggingFaceInferenceAPI` from `llama-index-llms-huggingface-api` which should be used instead.",
    action="always",
)
class HuggingFaceInferenceAPI(CustomLLM):
    """
    Wrapper on the Hugging Face's Inference API.

    Overview of the design:
    - Synchronous uses InferenceClient, asynchronous uses AsyncInferenceClient
    - chat uses the conversational task: https://huggingface.co/tasks/conversational
    - complete uses the text generation task: https://huggingface.co/tasks/text-generation

    Note: some models that support the text generation task can leverage Hugging
    Face's optimized deployment toolkit called text-generation-inference (TGI).
    Use InferenceClient.get_model_status to check if TGI is being used.

    Relevant links:
    - General Docs: https://huggingface.co/docs/api-inference/index
    - API Docs: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client
    - Source: https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub/inference
    """

    @classmethod
    def class_name(cls) -> str:
        return "HuggingFaceInferenceAPI"

    # Corresponds with huggingface_hub.InferenceClient
    model_name: Optional[str] = Field(
        default=None,
        description=(
            "The model to run inference with. Can be a model id hosted on the Hugging"
            " Face Hub, e.g. bigcode/starcoder or a URL to a deployed Inference"
            " Endpoint. Defaults to None, in which case a recommended model is"
            " automatically selected for the task (see Field below)."
        ),
    )
    token: Union[str, bool, None] = Field(
        default=None,
        description=(
            "Hugging Face token. Will default to the locally saved token. Pass "
            "token=False if you don’t want to send your token to the server."
        ),
    )
    timeout: Optional[float] = Field(
        default=None,
        description=(
            "The maximum number of seconds to wait for a response from the server."
            " Loading a new model in Inference API can take up to several minutes."
            " Defaults to None, meaning it will loop until the server is available."
        ),
    )
    headers: Dict[str, str] = Field(
        default=None,
        description=(
            "Additional headers to send to the server. By default only the"
            " authorization and user-agent headers are sent. Values in this dictionary"
            " will override the default values."
        ),
    )
    cookies: Dict[str, str] = Field(
        default=None, description="Additional cookies to send to the server."
    )
    task: Optional[str] = Field(
        default=None,
        description=(
            "Optional task to pick Hugging Face's recommended model, used when"
            " model_name is left as default of None."
        ),
    )

    _sync_client: "InferenceClient" = PrivateAttr()
    _async_client: "AsyncInferenceClient" = PrivateAttr()
    _get_model_info: "Callable[..., ModelInfo]" = PrivateAttr()

    context_window: int = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description=(
            LLMMetadata.model_fields["context_window"].description
            + " This may be looked up in a model's `config.json`."
        ),
    )
    num_output: int = Field(
        default=DEFAULT_NUM_OUTPUTS,
        description=LLMMetadata.model_fields["num_output"].description,
    )
    is_chat_model: bool = Field(
        default=False,
        description=(
            LLMMetadata.model_fields["is_chat_model"].description
            + " Unless chat templating is intentionally applied, Hugging Face models"
            " are not chat models."
        ),
    )
    is_function_calling_model: bool = Field(
        default=False,
        description=(
            LLMMetadata.model_fields["is_function_calling_model"].description
            + " As of 10/17/2023, Hugging Face doesn't support function calling"
            " messages."
        ),
    )

    def _get_inference_client_kwargs(self) -> Dict[str, Any]:
        """Extract the Hugging Face InferenceClient construction parameters."""
        return {
            "model": self.model_name,
            "token": self.token,
            "timeout": self.timeout,
            "headers": self.headers,
            "cookies": self.cookies,
        }

    def __init__(self, **kwargs: Any) -> None:
        """Initialize.

        Args:
            kwargs: See the class-level Fields.
        """
        if kwargs.get("model_name") is None:
            task = kwargs.get("task", "")
            # NOTE: task being None or empty string leads to ValueError,
            # which ensures model is present
            kwargs["model_name"] = InferenceClient.get_recommended_model(task=task)
            logger.debug(
                f"Using Hugging Face's recommended model {kwargs['model_name']}"
                f" given task {task}."
            )
        if kwargs.get("task") is None:
            task = "conversational"
        else:
            task = kwargs["task"].lower()

        super().__init__(**kwargs)  # Populate pydantic Fields
        self._sync_client = InferenceClient(**self._get_inference_client_kwargs())
        self._async_client = AsyncInferenceClient(**self._get_inference_client_kwargs())
        self._get_model_info = model_info

    def validate_supported(self, task: str) -> None:
        """
        Confirm the contained model_name is deployed on the Inference API service.

        Args:
            task: Hugging Face task to check within. A list of all tasks can be
                found here: https://huggingface.co/tasks
        """
        all_models = self._sync_client.list_deployed_models(frameworks="all")
        try:
            if self.model_name not in all_models[task]:
                raise ValueError(
                    "The Inference API service doesn't have the model"
                    f" {self.model_name!r} deployed."
                )
        except KeyError as exc:
            raise KeyError(
                f"Input task {task!r} not in possible tasks {list(all_models.keys())}."
            ) from exc

    def get_model_info(self, **kwargs: Any) -> "ModelInfo":
        """Get metadata on the current model from Hugging Face."""
        return self._get_model_info(self.model_name, **kwargs)

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.num_output,
            is_chat_model=self.is_chat_model,
            is_function_calling_model=self.is_function_calling_model,
            model_name=self.model_name,
        )

    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        # default to conversational task as that was the previous functionality
        if self.task == "conversational" or self.task is None:
            output: "ConversationalOutput" = self._sync_client.conversational(
                **{**chat_messages_to_conversational_kwargs(messages), **kwargs}
            )
            return ChatResponse(
                message=ChatMessage(
                    role=MessageRole.ASSISTANT, content=output["generated_text"]
                )
            )
        else:
            # try and use text generation
            prompt = self.messages_to_prompt(messages)
            completion = self.complete(prompt)
            return ChatResponse(
                message=ChatMessage(role=MessageRole.ASSISTANT, content=completion.text)
            )

    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        return CompletionResponse(
            text=self._sync_client.text_generation(
                prompt, **{**{"max_new_tokens": self.num_output}, **kwargs}
            )
        )

    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        raise NotImplementedError

    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        raise NotImplementedError

    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        raise NotImplementedError

    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        response = await self._async_client.text_generation(
            prompt, **{**{"max_new_tokens": self.num_output}, **kwargs}
        )
        return CompletionResponse(text=response)

    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        raise NotImplementedError

    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        raise NotImplementedError

validate_supported #

validate_supported(task: str) -> None

Confirm the contained model_name is deployed on the Inference API service.

Parameters:

Name Type Description Default
task str

Hugging Face task to check within. A list of all tasks can be found here: https://huggingface.co/tasks

required
Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def validate_supported(self, task: str) -> None:
    """
    Confirm the contained model_name is deployed on the Inference API service.

    Args:
        task: Hugging Face task to check within. A list of all tasks can be
            found here: https://huggingface.co/tasks
    """
    all_models = self._sync_client.list_deployed_models(frameworks="all")
    try:
        if self.model_name not in all_models[task]:
            raise ValueError(
                "The Inference API service doesn't have the model"
                f" {self.model_name!r} deployed."
            )
    except KeyError as exc:
        raise KeyError(
            f"Input task {task!r} not in possible tasks {list(all_models.keys())}."
        ) from exc

get_model_info #

get_model_info(**kwargs: Any) -> ModelInfo

Get metadata on the current model from Hugging Face.

Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
623
624
625
def get_model_info(self, **kwargs: Any) -> "ModelInfo":
    """Get metadata on the current model from Hugging Face."""
    return self._get_model_info(self.model_name, **kwargs)

HuggingFaceLLM #

Bases: CustomLLM

HuggingFace LLM.

Examples:

pip install llama-index-llms-huggingface

from llama_index.llms.huggingface import HuggingFaceLLM

def messages_to_prompt(messages):
    prompt = ""
    for message in messages:
        if message.role == 'system':
        prompt += f"<|system|>\n{message.content}</s>\n"
        elif message.role == 'user':
        prompt += f"<|user|>\n{message.content}</s>\n"
        elif message.role == 'assistant':
        prompt += f"<|assistant|>\n{message.content}</s>\n"

    # ensure we start with a system prompt, insert blank if needed
    if not prompt.startswith("<|system|>\n"):
        prompt = "<|system|>\n</s>\n" + prompt

    # add final assistant prompt
    prompt = prompt + "<|assistant|>\n"

    return prompt

def completion_to_prompt(completion):
    return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"

import torch
from transformers import BitsAndBytesConfig
from llama_index.core.prompts import PromptTemplate
from llama_index.llms.huggingface import HuggingFaceLLM

# quantize to save memory
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)

llm = HuggingFaceLLM(
    model_name="HuggingFaceH4/zephyr-7b-beta",
    tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
    context_window=3900,
    max_new_tokens=256,
    model_kwargs={"quantization_config": quantization_config},
    generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    device_map="auto",
)

response = llm.complete("What is the meaning of life?")
print(str(response))
Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
class HuggingFaceLLM(CustomLLM):
    r"""HuggingFace LLM.

    Examples:
        `pip install llama-index-llms-huggingface`

        ```python
        from llama_index.llms.huggingface import HuggingFaceLLM

        def messages_to_prompt(messages):
            prompt = ""
            for message in messages:
                if message.role == 'system':
                prompt += f"<|system|>\n{message.content}</s>\n"
                elif message.role == 'user':
                prompt += f"<|user|>\n{message.content}</s>\n"
                elif message.role == 'assistant':
                prompt += f"<|assistant|>\n{message.content}</s>\n"

            # ensure we start with a system prompt, insert blank if needed
            if not prompt.startswith("<|system|>\n"):
                prompt = "<|system|>\n</s>\n" + prompt

            # add final assistant prompt
            prompt = prompt + "<|assistant|>\n"

            return prompt

        def completion_to_prompt(completion):
            return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"

        import torch
        from transformers import BitsAndBytesConfig
        from llama_index.core.prompts import PromptTemplate
        from llama_index.llms.huggingface import HuggingFaceLLM

        # quantize to save memory
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
        )

        llm = HuggingFaceLLM(
            model_name="HuggingFaceH4/zephyr-7b-beta",
            tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
            context_window=3900,
            max_new_tokens=256,
            model_kwargs={"quantization_config": quantization_config},
            generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            device_map="auto",
        )

        response = llm.complete("What is the meaning of life?")
        print(str(response))
        ```
    """

    model_name: str = Field(
        default=DEFAULT_HUGGINGFACE_MODEL,
        description=(
            "The model name to use from HuggingFace. "
            "Unused if `model` is passed in directly."
        ),
    )
    context_window: int = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description=(LLMMetadata.model_fields["context_window"].description),
        gt=0,
    )
    max_new_tokens: int = Field(
        default=DEFAULT_NUM_OUTPUTS,
        description="The maximum number of tokens to generate.",
        gt=0,
    )
    system_prompt: str = Field(
        default="",
        description=(
            "The system prompt, containing any extra instructions or context. "
            "The model card on HuggingFace should specify if this is needed."
        ),
    )
    query_wrapper_prompt: PromptTemplate = Field(
        default=PromptTemplate("{query_str}"),
        description=(
            "The query wrapper prompt, containing the query placeholder. "
            "The model card on HuggingFace should specify if this is needed. "
            "Should contain a `{query_str}` placeholder."
        ),
    )
    tokenizer_name: str = Field(
        default=DEFAULT_HUGGINGFACE_MODEL,
        description=(
            "The name of the tokenizer to use from HuggingFace. "
            "Unused if `tokenizer` is passed in directly."
        ),
    )
    device_map: str = Field(
        default="auto", description="The device_map to use. Defaults to 'auto'."
    )
    stopping_ids: List[int] = Field(
        default_factory=list,
        description=(
            "The stopping ids to use. "
            "Generation stops when these token IDs are predicted."
        ),
    )
    tokenizer_outputs_to_remove: list = Field(
        default_factory=list,
        description=(
            "The outputs to remove from the tokenizer. "
            "Sometimes huggingface tokenizers return extra inputs that cause errors."
        ),
    )
    tokenizer_kwargs: dict = Field(
        default_factory=dict, description="The kwargs to pass to the tokenizer."
    )
    model_kwargs: dict = Field(
        default_factory=dict,
        description="The kwargs to pass to the model during initialization.",
    )
    generate_kwargs: dict = Field(
        default_factory=dict,
        description="The kwargs to pass to the model during generation.",
    )
    is_chat_model: bool = Field(
        default=False,
        description=(
            LLMMetadata.model_fields["is_chat_model"].description
            + " Be sure to verify that you either pass an appropriate tokenizer "
            "that can convert prompts to properly formatted chat messages or a "
            "`messages_to_prompt` that does so."
        ),
    )

    _model: Any = PrivateAttr()
    _tokenizer: Any = PrivateAttr()
    _stopping_criteria: Any = PrivateAttr()

    def __init__(
        self,
        context_window: int = DEFAULT_CONTEXT_WINDOW,
        max_new_tokens: int = DEFAULT_NUM_OUTPUTS,
        query_wrapper_prompt: Union[str, PromptTemplate] = "{query_str}",
        tokenizer_name: str = DEFAULT_HUGGINGFACE_MODEL,
        model_name: str = DEFAULT_HUGGINGFACE_MODEL,
        model: Optional[Any] = None,
        tokenizer: Optional[Any] = None,
        device_map: Optional[str] = "auto",
        stopping_ids: Optional[List[int]] = None,
        tokenizer_kwargs: Optional[dict] = None,
        tokenizer_outputs_to_remove: Optional[list] = None,
        model_kwargs: Optional[dict] = None,
        generate_kwargs: Optional[dict] = None,
        is_chat_model: Optional[bool] = False,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: str = "",
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        """Initialize params."""
        model_kwargs = model_kwargs or {}
        model = model or AutoModelForCausalLM.from_pretrained(
            model_name, device_map=device_map, **model_kwargs
        )

        # check context_window
        config_dict = model.config.to_dict()
        model_context_window = int(
            config_dict.get("max_position_embeddings", context_window)
        )
        if model_context_window and model_context_window < context_window:
            logger.warning(
                f"Supplied context_window {context_window} is greater "
                f"than the model's max input size {model_context_window}. "
                "Disable this warning by setting a lower context_window."
            )
            context_window = model_context_window

        tokenizer_kwargs = tokenizer_kwargs or {}
        if "max_length" not in tokenizer_kwargs:
            tokenizer_kwargs["max_length"] = context_window

        tokenizer = tokenizer or AutoTokenizer.from_pretrained(
            tokenizer_name, **tokenizer_kwargs
        )

        if tokenizer.name_or_path != model.name_or_path:
            logger.warning(
                f"The model `{model.name_or_path}` and tokenizer `{tokenizer.name_or_path}` "
                f"are different, please ensure that they are compatible."
            )

        # setup stopping criteria
        stopping_ids_list = stopping_ids or []

        class StopOnTokens(StoppingCriteria):
            def __call__(
                self,
                input_ids: torch.LongTensor,
                scores: torch.FloatTensor,
                **kwargs: Any,
            ) -> bool:
                for stop_id in stopping_ids_list:
                    if input_ids[0][-1] == stop_id:
                        return True
                return False

        stopping_criteria = StoppingCriteriaList([StopOnTokens()])

        if isinstance(query_wrapper_prompt, str):
            query_wrapper_prompt = PromptTemplate(query_wrapper_prompt)

        messages_to_prompt = messages_to_prompt or self._tokenizer_messages_to_prompt

        super().__init__(
            context_window=context_window,
            max_new_tokens=max_new_tokens,
            query_wrapper_prompt=query_wrapper_prompt,
            tokenizer_name=tokenizer_name,
            model_name=model_name,
            device_map=device_map,
            stopping_ids=stopping_ids or [],
            tokenizer_kwargs=tokenizer_kwargs or {},
            tokenizer_outputs_to_remove=tokenizer_outputs_to_remove or [],
            model_kwargs=model_kwargs or {},
            generate_kwargs=generate_kwargs or {},
            is_chat_model=is_chat_model,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )

        self._model = model
        self._tokenizer = tokenizer
        self._stopping_criteria = stopping_criteria

    @classmethod
    def class_name(cls) -> str:
        return "HuggingFace_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        """LLM metadata."""
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.max_new_tokens,
            model_name=self.model_name,
            is_chat_model=self.is_chat_model,
        )

    def _tokenizer_messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str:
        """Use the tokenizer to convert messages to prompt. Fallback to generic."""
        if hasattr(self._tokenizer, "apply_chat_template"):
            messages_dict = [
                {"role": message.role.value, "content": message.content}
                for message in messages
            ]
            return self._tokenizer.apply_chat_template(
                messages_dict, tokenize=False, add_generation_prompt=True
            )

        return generic_messages_to_prompt(messages)

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """Completion endpoint."""
        full_prompt = prompt
        if not formatted:
            if self.query_wrapper_prompt:
                full_prompt = self.query_wrapper_prompt.format(query_str=prompt)
            if self.completion_to_prompt:
                full_prompt = self.completion_to_prompt(full_prompt)
            elif self.system_prompt:
                full_prompt = f"{self.system_prompt} {full_prompt}"

        inputs = self._tokenizer(full_prompt, return_tensors="pt")
        inputs = inputs.to(self._model.device)

        # remove keys from the tokenizer if needed, to avoid HF errors
        for key in self.tokenizer_outputs_to_remove:
            if key in inputs:
                inputs.pop(key, None)

        tokens = self._model.generate(
            **inputs,
            max_new_tokens=self.max_new_tokens,
            stopping_criteria=self._stopping_criteria,
            **self.generate_kwargs,
        )
        completion_tokens = tokens[0][inputs["input_ids"].size(1) :]
        completion = self._tokenizer.decode(completion_tokens, skip_special_tokens=True)

        return CompletionResponse(text=completion, raw={"model_output": tokens})

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        """Streaming completion endpoint."""
        from transformers import TextIteratorStreamer

        full_prompt = prompt
        if not formatted:
            if self.query_wrapper_prompt:
                full_prompt = self.query_wrapper_prompt.format(query_str=prompt)
            if self.system_prompt:
                full_prompt = f"{self.system_prompt} {full_prompt}"

        inputs = self._tokenizer(full_prompt, return_tensors="pt")
        inputs = inputs.to(self._model.device)

        # remove keys from the tokenizer if needed, to avoid HF errors
        for key in self.tokenizer_outputs_to_remove:
            if key in inputs:
                inputs.pop(key, None)

        streamer = TextIteratorStreamer(
            self._tokenizer, skip_prompt=True, skip_special_tokens=True
        )
        generation_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=self.max_new_tokens,
            stopping_criteria=self._stopping_criteria,
            **self.generate_kwargs,
        )

        # generate in background thread
        # NOTE/TODO: token counting doesn't work with streaming
        thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
        thread.start()

        # create generator based off of streamer
        def gen() -> CompletionResponseGen:
            text = ""
            for x in streamer:
                text += x
                yield CompletionResponse(text=text, delta=x)

        return gen()

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        prompt = self.messages_to_prompt(messages)
        completion_response = self.complete(prompt, formatted=True, **kwargs)
        return completion_response_to_chat_response(completion_response)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        prompt = self.messages_to_prompt(messages)
        completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
        return stream_completion_response_to_chat_response(completion_response)

metadata property #

metadata: LLMMetadata

LLM metadata.

complete #

complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

Completion endpoint.

Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
@llm_completion_callback()
def complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """Completion endpoint."""
    full_prompt = prompt
    if not formatted:
        if self.query_wrapper_prompt:
            full_prompt = self.query_wrapper_prompt.format(query_str=prompt)
        if self.completion_to_prompt:
            full_prompt = self.completion_to_prompt(full_prompt)
        elif self.system_prompt:
            full_prompt = f"{self.system_prompt} {full_prompt}"

    inputs = self._tokenizer(full_prompt, return_tensors="pt")
    inputs = inputs.to(self._model.device)

    # remove keys from the tokenizer if needed, to avoid HF errors
    for key in self.tokenizer_outputs_to_remove:
        if key in inputs:
            inputs.pop(key, None)

    tokens = self._model.generate(
        **inputs,
        max_new_tokens=self.max_new_tokens,
        stopping_criteria=self._stopping_criteria,
        **self.generate_kwargs,
    )
    completion_tokens = tokens[0][inputs["input_ids"].size(1) :]
    completion = self._tokenizer.decode(completion_tokens, skip_special_tokens=True)

    return CompletionResponse(text=completion, raw={"model_output": tokens})

stream_complete #

stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen

Streaming completion endpoint.

Source code in llama-index-integrations/llms/llama-index-llms-huggingface/llama_index/llms/huggingface/base.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
@llm_completion_callback()
def stream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
    """Streaming completion endpoint."""
    from transformers import TextIteratorStreamer

    full_prompt = prompt
    if not formatted:
        if self.query_wrapper_prompt:
            full_prompt = self.query_wrapper_prompt.format(query_str=prompt)
        if self.system_prompt:
            full_prompt = f"{self.system_prompt} {full_prompt}"

    inputs = self._tokenizer(full_prompt, return_tensors="pt")
    inputs = inputs.to(self._model.device)

    # remove keys from the tokenizer if needed, to avoid HF errors
    for key in self.tokenizer_outputs_to_remove:
        if key in inputs:
            inputs.pop(key, None)

    streamer = TextIteratorStreamer(
        self._tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=self.max_new_tokens,
        stopping_criteria=self._stopping_criteria,
        **self.generate_kwargs,
    )

    # generate in background thread
    # NOTE/TODO: token counting doesn't work with streaming
    thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
    thread.start()

    # create generator based off of streamer
    def gen() -> CompletionResponseGen:
        text = ""
        for x in streamer:
            text += x
            yield CompletionResponse(text=text, delta=x)

    return gen()