Skip to content

Gigachat

GigaChatLLM #

Bases: CustomLLM

GigaChat LLM Implementation.

Examples:

pip install llama-index-llms-gigachat-ru

from llama_index.llms.gigachat import GigaChatLLM

llm = GigaChatLLM(
    credentials="YOUR_GIGACHAT_SECRET",
    verify_ssl_certs=False,
)
resp = llm.complete("What is the capital of France?")
print(resp)
Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class GigaChatLLM(CustomLLM):
    """
    GigaChat LLM Implementation.

    Examples:
        `pip install llama-index-llms-gigachat-ru`

        ```python
        from llama_index.llms.gigachat import GigaChatLLM

        llm = GigaChatLLM(
            credentials="YOUR_GIGACHAT_SECRET",
            verify_ssl_certs=False,
        )
        resp = llm.complete("What is the capital of France?")
        print(resp)
        ```
    """

    model: GigaChatModel = Field(default=GigaChatModel.GIGACHAT)
    base_url: Optional[str] = None
    auth_url: Optional[str] = None
    credentials: Optional[str] = None
    scope: Optional[str] = None
    access_token: Optional[str] = None
    profanity_check: Optional[bool] = None
    user: Optional[str] = None
    password: Optional[str] = None
    timeout: Optional[float] = None
    verify_ssl_certs: Optional[bool] = None
    verbose: Optional[bool] = None
    ca_bundle_file: Optional[str] = None
    cert_file: Optional[str] = None
    key_file: Optional[str] = None
    key_file_password: Optional[str] = None

    @property
    def context_window(self) -> int:
        """Get context window."""
        return CONTEXT_WINDOWS[self.model]

    @property
    def metadata(self) -> LLMMetadata:
        """Get LLM metadata."""
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.context_window,
            model_name=self.model,
        )

    @llm_completion_callback()
    async def acomplete(
        self,
        prompt: str,
        formatted: bool = False,
        **kwargs: Any,
    ) -> CompletionResponse:
        """Get completion asynchronously."""
        async with GigaChat(**self._gigachat_kwargs) as giga:
            response = await giga.achat(
                Chat(
                    model=self.model,
                    messages=[Messages(role="user", content=prompt)],
                )
            )
        return CompletionResponse(
            text=response.choices[0].message.content,
        )

    @llm_completion_callback()
    def complete(
        self,
        prompt: str,
        formatted: bool = False,
        **kwargs: Any,
    ) -> CompletionResponse:
        """Get completion."""
        with GigaChat(**self._gigachat_kwargs) as giga:
            response = giga.chat(
                Chat(
                    model=self.model,
                    messages=[Messages(role="user", content=prompt)],
                )
            )
        return CompletionResponse(
            text=response.choices[0].message.content,
        )

    @llm_chat_callback()
    async def achat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        """Get chat asynchronously."""
        async with GigaChat(**self._gigachat_kwargs) as giga:
            response = await giga.achat(
                Chat(
                    model=self.model,
                    messages=[
                        Messages(role=message.role, content=message.content)
                        for message in messages
                    ],
                )
            )
        return ChatResponse(
            message=ChatMessage(
                content=response.choices[0].message.content,
                role="assistant",
            ),
        )

    @llm_chat_callback()
    def chat(
        self,
        messages: Sequence[ChatMessage],
        **kwargs: Any,
    ) -> ChatResponse:
        """Get chat."""
        with GigaChat(**self._gigachat_kwargs) as giga:
            response = giga.chat(
                Chat(
                    model=self.model,
                    messages=[
                        Messages(role=message.role, content=message.content)
                        for message in messages
                    ],
                )
            )
        return ChatResponse(
            message=ChatMessage(
                content=response.choices[0].message.content,
                role="assistant",
            ),
        )

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, **kwargs: Any
    ) -> AsyncGenerator[CompletionResponse, Any]:
        """Get streaming completion asynchronously."""

        async def gen() -> AsyncGenerator[CompletionResponse, Any]:
            async with GigaChat(**self._gigachat_kwargs) as giga:
                chat = Chat(
                    model=self.model,
                    messages=[Messages(role="user", content=prompt)],
                )

                response = ""
                async for token in giga.astream(chat):
                    delta = token.choices[0].delta.content
                    response += delta
                    yield CompletionResponse(text=response, delta=delta)

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        """Get streaming completion."""

        def gen() -> Generator[CompletionResponse, Any, Any]:
            with GigaChat(**self._gigachat_kwargs) as giga:
                chat = Chat(
                    model=self.model,
                    messages=[Messages(role="user", content=prompt)],
                )

                response = ""
                for token in giga.stream(chat):
                    delta = token.choices[0].delta.content
                    response += delta
                    yield CompletionResponse(text=response, delta=delta)

        return gen()

    @property
    def _gigachat_kwargs(self) -> Dict[str, Union[str, bool, float]]:
        """Get GigaChat specific kwargs."""
        return {
            "base_url": self.base_url,
            "auth_url": self.auth_url,
            "credentials": self.credentials,
            "scope": self.scope,
            "access_token": self.access_token,
            "timeout": self.timeout,
            "verify_ssl_certs": self.verify_ssl_certs,
            "verbose": self.verbose,
            "ca_bundle_file": self.ca_bundle_file,
            "cert_file": self.cert_file,
            "key_file": self.key_file,
            "key_file_password": self.key_file_password,
        }

    @classmethod
    def class_name(cls) -> str:
        """Get class name."""
        return "GigaChatLLM"

context_window property #

context_window: int

Get context window.

metadata property #

metadata: LLMMetadata

Get LLM metadata.

acomplete async #

acomplete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

Get completion asynchronously.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
@llm_completion_callback()
async def acomplete(
    self,
    prompt: str,
    formatted: bool = False,
    **kwargs: Any,
) -> CompletionResponse:
    """Get completion asynchronously."""
    async with GigaChat(**self._gigachat_kwargs) as giga:
        response = await giga.achat(
            Chat(
                model=self.model,
                messages=[Messages(role="user", content=prompt)],
            )
        )
    return CompletionResponse(
        text=response.choices[0].message.content,
    )

complete #

complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

Get completion.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@llm_completion_callback()
def complete(
    self,
    prompt: str,
    formatted: bool = False,
    **kwargs: Any,
) -> CompletionResponse:
    """Get completion."""
    with GigaChat(**self._gigachat_kwargs) as giga:
        response = giga.chat(
            Chat(
                model=self.model,
                messages=[Messages(role="user", content=prompt)],
            )
        )
    return CompletionResponse(
        text=response.choices[0].message.content,
    )

achat async #

achat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Get chat asynchronously.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
@llm_chat_callback()
async def achat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponse:
    """Get chat asynchronously."""
    async with GigaChat(**self._gigachat_kwargs) as giga:
        response = await giga.achat(
            Chat(
                model=self.model,
                messages=[
                    Messages(role=message.role, content=message.content)
                    for message in messages
                ],
            )
        )
    return ChatResponse(
        message=ChatMessage(
            content=response.choices[0].message.content,
            role="assistant",
        ),
    )

chat #

chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

Get chat.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
@llm_chat_callback()
def chat(
    self,
    messages: Sequence[ChatMessage],
    **kwargs: Any,
) -> ChatResponse:
    """Get chat."""
    with GigaChat(**self._gigachat_kwargs) as giga:
        response = giga.chat(
            Chat(
                model=self.model,
                messages=[
                    Messages(role=message.role, content=message.content)
                    for message in messages
                ],
            )
        )
    return ChatResponse(
        message=ChatMessage(
            content=response.choices[0].message.content,
            role="assistant",
        ),
    )

astream_complete async #

astream_complete(prompt: str, **kwargs: Any) -> AsyncGenerator[CompletionResponse, Any]

Get streaming completion asynchronously.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
@llm_completion_callback()
async def astream_complete(
    self, prompt: str, **kwargs: Any
) -> AsyncGenerator[CompletionResponse, Any]:
    """Get streaming completion asynchronously."""

    async def gen() -> AsyncGenerator[CompletionResponse, Any]:
        async with GigaChat(**self._gigachat_kwargs) as giga:
            chat = Chat(
                model=self.model,
                messages=[Messages(role="user", content=prompt)],
            )

            response = ""
            async for token in giga.astream(chat):
                delta = token.choices[0].delta.content
                response += delta
                yield CompletionResponse(text=response, delta=delta)

    return gen()

stream_complete #

stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen

Get streaming completion.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
@llm_completion_callback()
def stream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
    """Get streaming completion."""

    def gen() -> Generator[CompletionResponse, Any, Any]:
        with GigaChat(**self._gigachat_kwargs) as giga:
            chat = Chat(
                model=self.model,
                messages=[Messages(role="user", content=prompt)],
            )

            response = ""
            for token in giga.stream(chat):
                delta = token.choices[0].delta.content
                response += delta
                yield CompletionResponse(text=response, delta=delta)

    return gen()

class_name classmethod #

class_name() -> str

Get class name.

Source code in llama-index-integrations/llms/llama-index-llms-gigachat/llama_index/llms/gigachat/base.py
230
231
232
233
@classmethod
def class_name(cls) -> str:
    """Get class name."""
    return "GigaChatLLM"