Skip to content

Bedrock converse

BedrockConverse #

Bases: FunctionCallingLLM

Bedrock Converse LLM.

Examples:

pip install llama-index-llms-bedrock-converse

from llama_index.llms.bedrock_converse import BedrockConverse

llm = BedrockConverse(
    model="anthropic.claude-3-haiku-20240307-v1:0",
    aws_access_key_id="AWS Access Key ID to use",
    aws_secret_access_key="AWS Secret Access Key to use",
    aws_session_token="AWS Session Token to use",
    region_name="AWS Region to use, eg. us-east-1",
)

resp = llm.complete("Paul Graham is ")
print(resp)
Source code in llama-index-integrations/llms/llama-index-llms-bedrock-converse/llama_index/llms/bedrock_converse/base.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
class BedrockConverse(FunctionCallingLLM):
    """
    Bedrock Converse LLM.

    Examples:
        `pip install llama-index-llms-bedrock-converse`

        ```python
        from llama_index.llms.bedrock_converse import BedrockConverse

        llm = BedrockConverse(
            model="anthropic.claude-3-haiku-20240307-v1:0",
            aws_access_key_id="AWS Access Key ID to use",
            aws_secret_access_key="AWS Secret Access Key to use",
            aws_session_token="AWS Session Token to use",
            region_name="AWS Region to use, eg. us-east-1",
        )

        resp = llm.complete("Paul Graham is ")
        print(resp)
        ```
    """

    model: str = Field(description="The modelId of the Bedrock model to use.")
    temperature: float = Field(
        default=DEFAULT_TEMPERATURE,
        description="The temperature to use for sampling.",
        ge=0.0,
        le=1.0,
    )
    max_tokens: int = Field(description="The maximum number of tokens to generate.")
    profile_name: Optional[str] = Field(
        description="The name of aws profile to use. If not given, then the default profile is used."
    )
    aws_access_key_id: Optional[str] = Field(
        description="AWS Access Key ID to use", exclude=True
    )
    aws_secret_access_key: Optional[str] = Field(
        description="AWS Secret Access Key to use", exclude=True
    )
    aws_session_token: Optional[str] = Field(
        description="AWS Session Token to use", exclude=True
    )
    region_name: Optional[str] = Field(
        description="AWS region name to use. Uses region configured in AWS CLI if not passed",
        exclude=True,
    )
    botocore_session: Optional[Any] = Field(
        description="Use this Botocore session instead of creating a new default one.",
        exclude=True,
    )
    botocore_config: Optional[Any] = Field(
        description="Custom configuration object to use instead of the default generated one.",
        exclude=True,
    )
    max_retries: int = Field(
        default=10, description="The maximum number of API retries.", gt=0
    )
    timeout: float = Field(
        default=60.0,
        description="The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.",
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict,
        description="Additional kwargs for the bedrock invokeModel request.",
    )

    _config: Any = PrivateAttr()
    _client: Any = PrivateAttr()
    _asession: Any = PrivateAttr()

    def __init__(
        self,
        model: str,
        temperature: float = DEFAULT_TEMPERATURE,
        max_tokens: Optional[int] = 512,
        profile_name: Optional[str] = None,
        aws_access_key_id: Optional[str] = None,
        aws_secret_access_key: Optional[str] = None,
        aws_session_token: Optional[str] = None,
        region_name: Optional[str] = None,
        botocore_session: Optional[Any] = None,
        client: Optional[Any] = None,
        timeout: Optional[float] = 60.0,
        max_retries: Optional[int] = 10,
        botocore_config: Optional[Any] = None,
        additional_kwargs: Optional[Dict[str, Any]] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        callback_manager = callback_manager or CallbackManager([])

        session_kwargs = {
            "profile_name": profile_name,
            "region_name": region_name,
            "aws_access_key_id": aws_access_key_id,
            "aws_secret_access_key": aws_secret_access_key,
            "aws_session_token": aws_session_token,
            "botocore_session": botocore_session,
        }

        super().__init__(
            temperature=temperature,
            max_tokens=max_tokens,
            additional_kwargs=additional_kwargs,
            timeout=timeout,
            max_retries=max_retries,
            model=model,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
            profile_name=profile_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            region_name=region_name,
            botocore_session=botocore_session,
            botocore_config=botocore_config,
        )

        self._config = None
        try:
            import boto3
            import aioboto3
            from botocore.config import Config

            self._config = (
                Config(
                    retries={"max_attempts": max_retries, "mode": "standard"},
                    connect_timeout=timeout,
                    read_timeout=timeout,
                )
                if botocore_config is None
                else botocore_config
            )
            session = boto3.Session(**session_kwargs)
            self._asession = aioboto3.Session(**session_kwargs)
        except ImportError:
            raise ImportError(
                "boto3 and/or aioboto3 package not found, install with"
                "'pip install boto3 aioboto3"
            )

        # Prior to general availability, custom boto3 wheel files were
        # distributed that used the bedrock service to invokeModel.
        # This check prevents any services still using those wheel files
        # from breaking
        if client is not None:
            self._client = client
        elif "bedrock-runtime" in session.get_available_services():
            self._client = session.client("bedrock-runtime", config=self._config)
        else:
            self._client = session.client("bedrock", config=self._config)

    @classmethod
    def class_name(cls) -> str:
        return "Bedrock_Converse_LLM"

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=bedrock_modelname_to_context_size(self.model),
            num_output=self.max_tokens,
            is_chat_model=True,
            model_name=self.model,
            is_function_calling_model=is_bedrock_function_calling_model(self.model),
        )

    @property
    def _model_kwargs(self) -> Dict[str, Any]:
        base_kwargs = {
            "model": self.model,
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
        }
        return {
            **base_kwargs,
            **self.additional_kwargs,
        }

    def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
        return {
            **self._model_kwargs,
            **kwargs,
        }

    def _get_content_and_tool_calls(
        self, response: Optional[Dict[str, Any]] = None, content: Dict[str, Any] = None
    ) -> Tuple[str, Dict[str, Any], List[str], List[str]]:
        assert (
            response is not None or content is not None
        ), f"Either response or content must be provided. Got response: {response}, content: {content}"
        assert (
            response is None or content is None
        ), f"Only one of response or content should be provided. Got response: {response}, content: {content}"
        tool_calls = []
        tool_call_ids = []
        status = []
        text_content = ""
        if content is not None:
            content_list = [content]
        else:
            content_list = response["output"]["message"]["content"]
        for content_block in content_list:
            if text := content_block.get("text", None):
                text_content += text
            if tool_usage := content_block.get("toolUse", None):
                tool_calls.append(tool_usage)
            if tool_result := content_block.get("toolResult", None):
                for tool_result_content in tool_result["content"]:
                    if text := tool_result_content.get("text", None):
                        text_content += text
                tool_call_ids.append(tool_result_content.get("toolUseId", ""))
                status.append(tool_result.get("status", ""))

        return text_content, tool_calls, tool_call_ids, status

    @llm_chat_callback()
    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(messages)
        if len(system_prompt) > 0 or self.system_prompt is None:
            self.system_prompt = system_prompt
        all_kwargs = self._get_all_kwargs(**kwargs)

        # invoke LLM in AWS Bedrock Converse with retry
        response = converse_with_retry(
            client=self._client,
            messages=converse_messages,
            system_prompt=self.system_prompt,
            max_retries=self.max_retries,
            stream=False,
            **all_kwargs,
        )

        content, tool_calls, tool_call_ids, status = self._get_content_and_tool_calls(
            response
        )

        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                content=content,
                additional_kwargs={
                    "tool_calls": tool_calls,
                    "tool_call_id": tool_call_ids,
                    "status": status,
                },
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = chat_to_completion_decorator(self.chat)
        return complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(messages)
        if len(system_prompt) > 0 or self.system_prompt is None:
            self.system_prompt = system_prompt
        all_kwargs = self._get_all_kwargs(**kwargs)

        # invoke LLM in AWS Bedrock Converse with retry
        response = converse_with_retry(
            client=self._client,
            messages=converse_messages,
            system_prompt=self.system_prompt,
            max_retries=self.max_retries,
            stream=True,
            **all_kwargs,
        )

        def gen() -> ChatResponseGen:
            content = {}
            role = MessageRole.ASSISTANT
            for chunk in response["stream"]:
                if content_block_delta := chunk.get("contentBlockDelta"):
                    content_delta = content_block_delta["delta"]
                    content = join_two_dicts(content, content_delta)
                    (
                        _,
                        tool_calls,
                        tool_call_ids,
                        status,
                    ) = self._get_content_and_tool_calls(content=content)

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            content=content.get("text", ""),
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": tool_call_ids,
                                "status": status,
                            },
                        ),
                        delta=content_delta.get("text", ""),
                        raw=response,
                    )
                elif content_block_start := chunk.get("contentBlockStart"):
                    tool_use = content_block_start["toolUse"]
                    content = join_two_dicts(content, tool_use)
                    (
                        _,
                        tool_calls,
                        tool_call_ids,
                        status,
                    ) = self._get_content_and_tool_calls(content=content)

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            content=content.get("text", ""),
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": tool_call_ids,
                                "status": status,
                            },
                        ),
                        raw=response,
                    )

        return gen()

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
        return stream_complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(messages)
        if len(system_prompt) > 0 or self.system_prompt is None:
            self.system_prompt = system_prompt
        all_kwargs = self._get_all_kwargs(**kwargs)

        # invoke LLM in AWS Bedrock Converse with retry
        response = await converse_with_retry_async(
            session=self._asession,
            config=self._config,
            messages=converse_messages,
            system_prompt=self.system_prompt,
            max_retries=self.max_retries,
            stream=False,
            **all_kwargs,
        )

        content, tool_calls, tool_call_ids, status = self._get_content_and_tool_calls(
            response
        )

        return ChatResponse(
            message=ChatMessage(
                role=MessageRole.ASSISTANT,
                content=content,
                additional_kwargs={
                    "tool_calls": tool_calls,
                    "tool_call_id": tool_call_ids,
                    "status": status,
                },
            ),
            raw=dict(response),
        )

    @llm_completion_callback()
    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        complete_fn = achat_to_completion_decorator(self.achat)
        return await complete_fn(prompt, **kwargs)

    @llm_chat_callback()
    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        # convert Llama Index messages to AWS Bedrock Converse messages
        converse_messages, system_prompt = messages_to_converse_messages(messages)
        if len(system_prompt) > 0 or self.system_prompt is None:
            self.system_prompt = system_prompt
        all_kwargs = self._get_all_kwargs(**kwargs)

        # invoke LLM in AWS Bedrock Converse with retry
        response_gen = await converse_with_retry_async(
            session=self._asession,
            config=self._config,
            messages=converse_messages,
            system_prompt=self.system_prompt,
            max_retries=self.max_retries,
            stream=True,
            **all_kwargs,
        )

        async def gen() -> ChatResponseAsyncGen:
            content = {}
            role = MessageRole.ASSISTANT
            async for chunk in response_gen:
                if content_block_delta := chunk.get("contentBlockDelta"):
                    content_delta = content_block_delta["delta"]
                    content = join_two_dicts(content, content_delta)
                    (
                        _,
                        tool_calls,
                        tool_call_ids,
                        status,
                    ) = self._get_content_and_tool_calls(content=content)

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            content=content.get("text", ""),
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": tool_call_ids,
                                "status": status,
                            },
                        ),
                        delta=content_delta.get("text", ""),
                        raw=chunk,
                    )
                elif content_block_start := chunk.get("contentBlockStart"):
                    tool_use = content_block_start["toolUse"]
                    content = join_two_dicts(content, tool_use)
                    (
                        _,
                        tool_calls,
                        tool_call_ids,
                        status,
                    ) = self._get_content_and_tool_calls(content=content)

                    yield ChatResponse(
                        message=ChatMessage(
                            role=role,
                            content=content.get("text", ""),
                            additional_kwargs={
                                "tool_calls": tool_calls,
                                "tool_call_id": tool_call_ids,
                                "status": status,
                            },
                        ),
                        raw=chunk,
                    )

        return gen()

    @llm_completion_callback()
    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat)
        return await astream_complete_fn(prompt, **kwargs)

    def _prepare_chat_with_tools(
        self,
        tools: List["BaseTool"],
        user_msg: Optional[Union[str, ChatMessage]] = None,
        chat_history: Optional[List[ChatMessage]] = None,
        verbose: bool = False,
        allow_parallel_tool_calls: bool = False,
        tool_choice: Optional[dict] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """Prepare the arguments needed to let the LLM chat with tools."""
        chat_history = chat_history or []

        if isinstance(user_msg, str):
            user_msg = ChatMessage(role=MessageRole.USER, content=user_msg)
            chat_history.append(user_msg)

        # convert Llama Index tools to AWS Bedrock Converse tools
        tool_config = tools_to_converse_tools(tools)
        if tool_choice:
            # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolChoice.html
            # e.g. { "auto": {} }
            tool_config["toolChoice"] = tool_choice

        return {
            "messages": chat_history,
            "tools": tool_config,
            **kwargs,
        }

    def _validate_chat_with_tools_response(
        self,
        response: ChatResponse,
        tools: List["BaseTool"],
        allow_parallel_tool_calls: bool = False,
        **kwargs: Any,
    ) -> ChatResponse:
        """Validate the response from chat_with_tools."""
        if not allow_parallel_tool_calls:
            force_single_tool_call(response)

        return response

    def get_tool_calls_from_response(
        self,
        response: "ChatResponse",
        error_on_no_tool_call: bool = True,
        **kwargs: Any,
    ) -> List[ToolSelection]:
        """Predict and call the tool."""
        tool_calls = response.message.additional_kwargs.get("tool_calls", [])

        if len(tool_calls) < 1:
            if error_on_no_tool_call:
                raise ValueError(
                    f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
                )
            else:
                return []

        tool_selections = []
        for tool_call in tool_calls:
            if (
                "input" not in tool_call
                or "toolUseId" not in tool_call
                or "name" not in tool_call
            ):
                raise ValueError("Invalid tool call.")
            argument_dict = (
                json.loads(tool_call["input"])
                if isinstance(tool_call["input"], str)
                else tool_call["input"]
            )

            tool_selections.append(
                ToolSelection(
                    tool_id=tool_call["toolUseId"],
                    tool_name=tool_call["name"],
                    tool_kwargs=argument_dict,
                )
            )

        return tool_selections

get_tool_calls_from_response #

get_tool_calls_from_response(response: ChatResponse, error_on_no_tool_call: bool = True, **kwargs: Any) -> List[ToolSelection]

Predict and call the tool.

Source code in llama-index-integrations/llms/llama-index-llms-bedrock-converse/llama_index/llms/bedrock_converse/base.py
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
def get_tool_calls_from_response(
    self,
    response: "ChatResponse",
    error_on_no_tool_call: bool = True,
    **kwargs: Any,
) -> List[ToolSelection]:
    """Predict and call the tool."""
    tool_calls = response.message.additional_kwargs.get("tool_calls", [])

    if len(tool_calls) < 1:
        if error_on_no_tool_call:
            raise ValueError(
                f"Expected at least one tool call, but got {len(tool_calls)} tool calls."
            )
        else:
            return []

    tool_selections = []
    for tool_call in tool_calls:
        if (
            "input" not in tool_call
            or "toolUseId" not in tool_call
            or "name" not in tool_call
        ):
            raise ValueError("Invalid tool call.")
        argument_dict = (
            json.loads(tool_call["input"])
            if isinstance(tool_call["input"], str)
            else tool_call["input"]
        )

        tool_selections.append(
            ToolSelection(
                tool_id=tool_call["toolUseId"],
                tool_name=tool_call["name"],
                tool_kwargs=argument_dict,
            )
        )

    return tool_selections