Skip to content

Question

QuestionsAnsweredExtractor #

Bases: BaseExtractor

Questions answered extractor. Node-level extractor. Extracts questions_this_excerpt_can_answer metadata field.

Parameters:

Name Type Description Default
llm Optional[LLM]

LLM

required
questions int

number of questions to extract

5
prompt_template str

template for question extraction,

'Here is the context:\n{context_str}\n\nGiven the contextual information, generate {num_questions} questions this context can provide specific answers to which are unlikely to be found elsewhere.\n\nHigher-level summaries of surrounding context may be provided as well. Try using these summaries to generate better questions that this context can answer.\n\n'
embedding_only bool

whether to use embedding only

True
Source code in llama-index-core/llama_index/core/extractors/metadata_extractors.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
class QuestionsAnsweredExtractor(BaseExtractor):
    """
    Questions answered extractor. Node-level extractor.
    Extracts `questions_this_excerpt_can_answer` metadata field.

    Args:
        llm (Optional[LLM]): LLM
        questions (int): number of questions to extract
        prompt_template (str): template for question extraction,
        embedding_only (bool): whether to use embedding only
    """

    llm: SerializeAsAny[LLM] = Field(description="The LLM to use for generation.")
    questions: int = Field(
        default=5,
        description="The number of questions to generate.",
        gt=0,
    )
    prompt_template: str = Field(
        default=DEFAULT_QUESTION_GEN_TMPL,
        description="Prompt template to use when generating questions.",
    )
    embedding_only: bool = Field(
        default=True, description="Whether to use metadata for emebddings only."
    )

    def __init__(
        self,
        llm: Optional[LLM] = None,
        # TODO: llm_predictor arg is deprecated
        llm_predictor: Optional[LLM] = None,
        questions: int = 5,
        prompt_template: str = DEFAULT_QUESTION_GEN_TMPL,
        embedding_only: bool = True,
        num_workers: int = DEFAULT_NUM_WORKERS,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        if questions < 1:
            raise ValueError("questions must be >= 1")

        super().__init__(
            llm=llm or llm_predictor or Settings.llm,
            questions=questions,
            prompt_template=prompt_template,
            embedding_only=embedding_only,
            num_workers=num_workers,
            **kwargs,
        )

    @classmethod
    def class_name(cls) -> str:
        return "QuestionsAnsweredExtractor"

    async def _aextract_questions_from_node(self, node: BaseNode) -> Dict[str, str]:
        """Extract questions from a node and return it's metadata dict."""
        if self.is_text_node_only and not isinstance(node, TextNode):
            return {}

        context_str = node.get_content(metadata_mode=self.metadata_mode)
        prompt = PromptTemplate(template=self.prompt_template)
        questions = await self.llm.apredict(
            prompt, num_questions=self.questions, context_str=context_str
        )

        return {"questions_this_excerpt_can_answer": questions.strip()}

    async def aextract(self, nodes: Sequence[BaseNode]) -> List[Dict]:
        questions_jobs = []
        for node in nodes:
            questions_jobs.append(self._aextract_questions_from_node(node))

        metadata_list: List[Dict] = await run_jobs(
            questions_jobs, show_progress=self.show_progress, workers=self.num_workers
        )

        return metadata_list