Skip to content

Pydantic

PydanticProgramExtractor #

Bases: BaseExtractor

Pydantic program extractor.

Uses an LLM to extract out a Pydantic object. Return attributes of that object in a dictionary.

Parameters:

Name Type Description Default
program BasePydanticProgram

Pydantic program to extract.

required
input_key str

Key to use as input to the program (the program template string must expose this key).

'input'
extract_template_str str

Template to use for extraction.

'Here is the content of the section:\n----------------\n{context_str}\n----------------\nGiven the contextual information, extract out a {class_name} object.'
Source code in llama-index-core/llama_index/core/extractors/metadata_extractors.py
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
class PydanticProgramExtractor(BaseExtractor):
    """Pydantic program extractor.

    Uses an LLM to extract out a Pydantic object. Return attributes of that object
    in a dictionary.

    """

    program: SerializeAsAny[BasePydanticProgram] = Field(
        ..., description="Pydantic program to extract."
    )
    input_key: str = Field(
        default="input",
        description=(
            "Key to use as input to the program (the program "
            "template string must expose this key)."
        ),
    )
    extract_template_str: str = Field(
        default=DEFAULT_EXTRACT_TEMPLATE_STR,
        description="Template to use for extraction.",
    )

    @classmethod
    def class_name(cls) -> str:
        return "PydanticModelExtractor"

    async def _acall_program(self, node: BaseNode) -> Dict[str, Any]:
        """Call the program on a node."""
        if self.is_text_node_only and not isinstance(node, TextNode):
            return {}

        extract_str = self.extract_template_str.format(
            context_str=node.get_content(metadata_mode=self.metadata_mode),
            class_name=self.program.output_cls.__name__,
        )

        ret_object = await self.program.acall(**{self.input_key: extract_str})
        return ret_object.dict()

    async def aextract(self, nodes: Sequence[BaseNode]) -> List[Dict]:
        """Extract pydantic program."""
        program_jobs = []
        for node in nodes:
            program_jobs.append(self._acall_program(node))

        metadata_list: List[Dict] = await run_jobs(
            program_jobs, show_progress=self.show_progress, workers=self.num_workers
        )

        return metadata_list

aextract async #

aextract(nodes: Sequence[BaseNode]) -> List[Dict]

Extract pydantic program.

Source code in llama-index-core/llama_index/core/extractors/metadata_extractors.py
505
506
507
508
509
510
511
512
513
514
515
async def aextract(self, nodes: Sequence[BaseNode]) -> List[Dict]:
    """Extract pydantic program."""
    program_jobs = []
    for node in nodes:
        program_jobs.append(self._acall_program(node))

    metadata_list: List[Dict] = await run_jobs(
        program_jobs, show_progress=self.show_progress, workers=self.num_workers
    )

    return metadata_list