Skip to content

Metrics

Evaluation modules.

MRR #

Bases: BaseRetrievalMetric

MRR (Mean Reciprocal Rank) metric with two calculation options.

  • The default method calculates the reciprocal rank of the first relevant retrieved document.
  • The more granular method sums the reciprocal ranks of all relevant retrieved documents and divides by the count of relevant documents.

Parameters:

Name Type Description Default
use_granular_mrr bool
False

Attributes:

Name Type Description
metric_name str

The name of the metric.

use_granular_mrr bool

Determines whether to use the granular method for calculation.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics.py
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class MRR(BaseRetrievalMetric):
    """MRR (Mean Reciprocal Rank) metric with two calculation options.

    - The default method calculates the reciprocal rank of the first relevant retrieved document.
    - The more granular method sums the reciprocal ranks of all relevant retrieved documents and divides by the count of relevant documents.

    Attributes:
        metric_name (str): The name of the metric.
        use_granular_mrr (bool): Determines whether to use the granular method for calculation.
    """

    metric_name: ClassVar[str] = "mrr"
    use_granular_mrr: bool = False

    def compute(
        self,
        query: Optional[str] = None,
        expected_ids: Optional[List[str]] = None,
        retrieved_ids: Optional[List[str]] = None,
        expected_texts: Optional[List[str]] = None,
        retrieved_texts: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> RetrievalMetricResult:
        """Compute MRR based on the provided inputs and selected method.

        Parameters:
            query (Optional[str]): The query string (not used in the current implementation).
            expected_ids (Optional[List[str]]): Expected document IDs.
            retrieved_ids (Optional[List[str]]): Retrieved document IDs.
            expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
            retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).

        Raises:
            ValueError: If the necessary IDs are not provided.

        Returns:
            RetrievalMetricResult: The result with the computed MRR score.
        """
        # Checking for the required arguments
        if (
            retrieved_ids is None
            or expected_ids is None
            or not retrieved_ids
            or not expected_ids
        ):
            raise ValueError("Retrieved ids and expected ids must be provided")

        if self.use_granular_mrr:
            # Granular MRR calculation: All relevant retrieved docs have their reciprocal ranks summed and averaged
            expected_set = set(expected_ids)
            reciprocal_rank_sum = 0.0
            relevant_docs_count = 0
            for index, doc_id in enumerate(retrieved_ids):
                if doc_id in expected_set:
                    relevant_docs_count += 1
                    reciprocal_rank_sum += 1.0 / (index + 1)
            mrr_score = (
                reciprocal_rank_sum / relevant_docs_count
                if relevant_docs_count > 0
                else 0.0
            )
        else:
            # Default MRR calculation: Reciprocal rank of the first relevant document retrieved
            for i, id in enumerate(retrieved_ids):
                if id in expected_ids:
                    return RetrievalMetricResult(score=1.0 / (i + 1))
            mrr_score = 0.0

        return RetrievalMetricResult(score=mrr_score)

compute #

compute(query: Optional[str] = None, expected_ids: Optional[List[str]] = None, retrieved_ids: Optional[List[str]] = None, expected_texts: Optional[List[str]] = None, retrieved_texts: Optional[List[str]] = None, **kwargs: Any) -> RetrievalMetricResult

Compute MRR based on the provided inputs and selected method.

Parameters:

Name Type Description Default
query Optional[str]

The query string (not used in the current implementation).

None
expected_ids Optional[List[str]]

Expected document IDs.

None
retrieved_ids Optional[List[str]]

Retrieved document IDs.

None
expected_texts Optional[List[str]]

Expected texts (not used in the current implementation).

None
retrieved_texts Optional[List[str]]

Retrieved texts (not used in the current implementation).

None

Raises:

Type Description
ValueError

If the necessary IDs are not provided.

Returns:

Name Type Description
RetrievalMetricResult RetrievalMetricResult

The result with the computed MRR score.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def compute(
    self,
    query: Optional[str] = None,
    expected_ids: Optional[List[str]] = None,
    retrieved_ids: Optional[List[str]] = None,
    expected_texts: Optional[List[str]] = None,
    retrieved_texts: Optional[List[str]] = None,
    **kwargs: Any,
) -> RetrievalMetricResult:
    """Compute MRR based on the provided inputs and selected method.

    Parameters:
        query (Optional[str]): The query string (not used in the current implementation).
        expected_ids (Optional[List[str]]): Expected document IDs.
        retrieved_ids (Optional[List[str]]): Retrieved document IDs.
        expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
        retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).

    Raises:
        ValueError: If the necessary IDs are not provided.

    Returns:
        RetrievalMetricResult: The result with the computed MRR score.
    """
    # Checking for the required arguments
    if (
        retrieved_ids is None
        or expected_ids is None
        or not retrieved_ids
        or not expected_ids
    ):
        raise ValueError("Retrieved ids and expected ids must be provided")

    if self.use_granular_mrr:
        # Granular MRR calculation: All relevant retrieved docs have their reciprocal ranks summed and averaged
        expected_set = set(expected_ids)
        reciprocal_rank_sum = 0.0
        relevant_docs_count = 0
        for index, doc_id in enumerate(retrieved_ids):
            if doc_id in expected_set:
                relevant_docs_count += 1
                reciprocal_rank_sum += 1.0 / (index + 1)
        mrr_score = (
            reciprocal_rank_sum / relevant_docs_count
            if relevant_docs_count > 0
            else 0.0
        )
    else:
        # Default MRR calculation: Reciprocal rank of the first relevant document retrieved
        for i, id in enumerate(retrieved_ids):
            if id in expected_ids:
                return RetrievalMetricResult(score=1.0 / (i + 1))
        mrr_score = 0.0

    return RetrievalMetricResult(score=mrr_score)

HitRate #

Bases: BaseRetrievalMetric

Hit rate metric: Compute hit rate with two calculation options.

  • The default method checks for a single match between any of the retrieved docs and expected docs.
  • The more granular method checks for all potential matches between retrieved docs and expected docs.

Parameters:

Name Type Description Default
use_granular_hit_rate bool
False

Attributes:

Name Type Description
metric_name str

The name of the metric.

use_granular_hit_rate bool

Determines whether to use the granular method for calculation.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class HitRate(BaseRetrievalMetric):
    """Hit rate metric: Compute hit rate with two calculation options.

    - The default method checks for a single match between any of the retrieved docs and expected docs.
    - The more granular method checks for all potential matches between retrieved docs and expected docs.

    Attributes:
        metric_name (str): The name of the metric.
        use_granular_hit_rate (bool): Determines whether to use the granular method for calculation.
    """

    metric_name: ClassVar[str] = "hit_rate"
    use_granular_hit_rate: bool = False

    def compute(
        self,
        query: Optional[str] = None,
        expected_ids: Optional[List[str]] = None,
        retrieved_ids: Optional[List[str]] = None,
        expected_texts: Optional[List[str]] = None,
        retrieved_texts: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> RetrievalMetricResult:
        """Compute metric based on the provided inputs.

        Parameters:
            query (Optional[str]): The query string (not used in the current implementation).
            expected_ids (Optional[List[str]]): Expected document IDs.
            retrieved_ids (Optional[List[str]]): Retrieved document IDs.
            expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
            retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).

        Raises:
            ValueError: If the necessary IDs are not provided.

        Returns:
            RetrievalMetricResult: The result with the computed hit rate score.
        """
        # Checking for the required arguments
        if (
            retrieved_ids is None
            or expected_ids is None
            or not retrieved_ids
            or not expected_ids
        ):
            raise ValueError("Retrieved ids and expected ids must be provided")

        if self.use_granular_hit_rate:
            # Granular HitRate calculation: Calculate all hits and divide by the number of expected docs
            expected_set = set(expected_ids)
            hits = sum(1 for doc_id in retrieved_ids if doc_id in expected_set)
            score = hits / len(expected_ids) if expected_ids else 0.0
        else:
            # Default HitRate calculation: Check if there is a single hit
            is_hit = any(id in expected_ids for id in retrieved_ids)
            score = 1.0 if is_hit else 0.0

        return RetrievalMetricResult(score=score)

compute #

compute(query: Optional[str] = None, expected_ids: Optional[List[str]] = None, retrieved_ids: Optional[List[str]] = None, expected_texts: Optional[List[str]] = None, retrieved_texts: Optional[List[str]] = None, **kwargs: Any) -> RetrievalMetricResult

Compute metric based on the provided inputs.

Parameters:

Name Type Description Default
query Optional[str]

The query string (not used in the current implementation).

None
expected_ids Optional[List[str]]

Expected document IDs.

None
retrieved_ids Optional[List[str]]

Retrieved document IDs.

None
expected_texts Optional[List[str]]

Expected texts (not used in the current implementation).

None
retrieved_texts Optional[List[str]]

Retrieved texts (not used in the current implementation).

None

Raises:

Type Description
ValueError

If the necessary IDs are not provided.

Returns:

Name Type Description
RetrievalMetricResult RetrievalMetricResult

The result with the computed hit rate score.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def compute(
    self,
    query: Optional[str] = None,
    expected_ids: Optional[List[str]] = None,
    retrieved_ids: Optional[List[str]] = None,
    expected_texts: Optional[List[str]] = None,
    retrieved_texts: Optional[List[str]] = None,
    **kwargs: Any,
) -> RetrievalMetricResult:
    """Compute metric based on the provided inputs.

    Parameters:
        query (Optional[str]): The query string (not used in the current implementation).
        expected_ids (Optional[List[str]]): Expected document IDs.
        retrieved_ids (Optional[List[str]]): Retrieved document IDs.
        expected_texts (Optional[List[str]]): Expected texts (not used in the current implementation).
        retrieved_texts (Optional[List[str]]): Retrieved texts (not used in the current implementation).

    Raises:
        ValueError: If the necessary IDs are not provided.

    Returns:
        RetrievalMetricResult: The result with the computed hit rate score.
    """
    # Checking for the required arguments
    if (
        retrieved_ids is None
        or expected_ids is None
        or not retrieved_ids
        or not expected_ids
    ):
        raise ValueError("Retrieved ids and expected ids must be provided")

    if self.use_granular_hit_rate:
        # Granular HitRate calculation: Calculate all hits and divide by the number of expected docs
        expected_set = set(expected_ids)
        hits = sum(1 for doc_id in retrieved_ids if doc_id in expected_set)
        score = hits / len(expected_ids) if expected_ids else 0.0
    else:
        # Default HitRate calculation: Check if there is a single hit
        is_hit = any(id in expected_ids for id in retrieved_ids)
        score = 1.0 if is_hit else 0.0

    return RetrievalMetricResult(score=score)

RetrievalMetricResult #

Bases: BaseModel

Metric result.

Parameters:

Name Type Description Default
score float

Score for the metric

required

Attributes:

Name Type Description
score float

Score for the metric

metadata Dict[str, Any]

Metadata for the metric result

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics_base.py
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class RetrievalMetricResult(BaseModel):
    """Metric result.

    Attributes:
        score (float): Score for the metric
        metadata (Dict[str, Any]): Metadata for the metric result

    """

    score: float = Field(..., description="Score for the metric")
    metadata: Dict[str, Any] = Field(
        default_factory=dict, description="Metadata for the metric result"
    )

    def __str__(self) -> str:
        """String representation."""
        return f"Score: {self.score}\nMetadata: {self.metadata}"

    def __float__(self) -> float:
        """Float representation."""
        return self.score

resolve_metrics #

resolve_metrics(metrics: List[str]) -> List[Type[BaseRetrievalMetric]]

Resolve metrics from list of metric names.

Source code in llama-index-core/llama_index/core/evaluation/retrieval/metrics.py
465
466
467
468
469
470
471
def resolve_metrics(metrics: List[str]) -> List[Type[BaseRetrievalMetric]]:
    """Resolve metrics from list of metric names."""
    for metric in metrics:
        if metric not in METRIC_REGISTRY:
            raise ValueError(f"Invalid metric name: {metric}")

    return [METRIC_REGISTRY[metric] for metric in metrics]