Skip to content

Context relevancy

Evaluation modules.

ContextRelevancyEvaluator #

Bases: BaseEvaluator

Context relevancy evaluator.

Evaluates the relevancy of retrieved contexts to a query. This evaluator considers the query string and retrieved contexts.

Parameters:

Name Type Description Default
raise_error(Optional[bool])

Whether to raise an error if the response is invalid. Defaults to False.

required
eval_template(Optional[Union[str, BasePromptTemplate]]

The template to use for evaluation.

required
refine_template(Optional[Union[str, BasePromptTemplate]]

The template to use for refinement.

required
Source code in llama-index-core/llama_index/core/evaluation/context_relevancy.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class ContextRelevancyEvaluator(BaseEvaluator):
    """Context relevancy evaluator.

    Evaluates the relevancy of retrieved contexts to a query.
    This evaluator considers the query string and retrieved contexts.

    Args:
        raise_error(Optional[bool]):
            Whether to raise an error if the response is invalid.
            Defaults to False.
        eval_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for evaluation.
        refine_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for refinement.
    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        raise_error: bool = False,
        eval_template: str | BasePromptTemplate | None = None,
        refine_template: str | BasePromptTemplate | None = None,
        score_threshold: float = _DEFAULT_SCORE_THRESHOLD,
        parser_function: Callable[
            [str], Tuple[Optional[float], Optional[str]]
        ] = _default_parser_function,
    ) -> None:
        """Init params."""
        from llama_index.core import Settings

        self._llm = llm or Settings.llm
        self._raise_error = raise_error

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._refine_template: BasePromptTemplate
        if isinstance(refine_template, str):
            self._refine_template = PromptTemplate(refine_template)
        else:
            self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE

        self.parser_function = parser_function
        self.score_threshold = score_threshold

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
            "refine_template": self._refine_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]
        if "refine_template" in prompts:
            self._refine_template = prompts["refine_template"]

    async def aevaluate(
        self,
        query: str | None = None,
        response: str | None = None,
        contexts: Sequence[str] | None = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        """Evaluate whether the contexts is relevant to the query."""
        del kwargs  # Unused
        del response  # Unused

        if query is None or contexts is None:
            raise ValueError("Both query and contexts must be provided")

        docs = [Document(text=context) for context in contexts]
        index = SummaryIndex.from_documents(docs)

        await asyncio.sleep(sleep_time_in_seconds)

        query_engine = index.as_query_engine(
            llm=self._llm,
            text_qa_template=self._eval_template,
            refine_template=self._refine_template,
        )
        response_obj = await query_engine.aquery(query)
        raw_response_txt = str(response_obj)

        score, reasoning = self.parser_function(raw_response_txt)

        invalid_result, invalid_reason = False, None
        if score is None and reasoning is None:
            if self._raise_error:
                raise ValueError("The response is invalid")
            invalid_result = True
            invalid_reason = "Unable to parse the output string."

        if score:
            score /= self.score_threshold

        return EvaluationResult(
            query=query,
            contexts=contexts,
            score=score,
            feedback=raw_response_txt,
            invalid_result=invalid_result,
            invalid_reason=invalid_reason,
        )

aevaluate async #

aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult

Evaluate whether the contexts is relevant to the query.

Source code in llama-index-core/llama_index/core/evaluation/context_relevancy.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
async def aevaluate(
    self,
    query: str | None = None,
    response: str | None = None,
    contexts: Sequence[str] | None = None,
    sleep_time_in_seconds: int = 0,
    **kwargs: Any,
) -> EvaluationResult:
    """Evaluate whether the contexts is relevant to the query."""
    del kwargs  # Unused
    del response  # Unused

    if query is None or contexts is None:
        raise ValueError("Both query and contexts must be provided")

    docs = [Document(text=context) for context in contexts]
    index = SummaryIndex.from_documents(docs)

    await asyncio.sleep(sleep_time_in_seconds)

    query_engine = index.as_query_engine(
        llm=self._llm,
        text_qa_template=self._eval_template,
        refine_template=self._refine_template,
    )
    response_obj = await query_engine.aquery(query)
    raw_response_txt = str(response_obj)

    score, reasoning = self.parser_function(raw_response_txt)

    invalid_result, invalid_reason = False, None
    if score is None and reasoning is None:
        if self._raise_error:
            raise ValueError("The response is invalid")
        invalid_result = True
        invalid_reason = "Unable to parse the output string."

    if score:
        score /= self.score_threshold

    return EvaluationResult(
        query=query,
        contexts=contexts,
        score=score,
        feedback=raw_response_txt,
        invalid_result=invalid_result,
        invalid_reason=invalid_reason,
    )