Skip to content

Upstage

UpstageEmbedding #

Bases: OpenAIEmbedding

Class for Upstage embeddings.

Source code in llama-index-integrations/embeddings/llama-index-embeddings-upstage/llama_index/embeddings/upstage/base.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
class UpstageEmbedding(OpenAIEmbedding):
    """
    Class for Upstage embeddings.
    """

    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict, description="Additional kwargs for the Upstage API."
    )

    api_key: str = Field(description="The Upstage API key.")
    api_base: Optional[str] = Field(
        default=DEFAULT_UPSTAGE_API_BASE, description="The base URL for Upstage API."
    )
    dimensions: Optional[int] = Field(
        None,
        description="Not supported yet. The number of dimensions the resulting output embeddings should have.",
    )

    def __init__(
        self,
        model: str = "embedding",
        embed_batch_size: int = 100,
        dimensions: Optional[int] = None,
        additional_kwargs: Dict[str, Any] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        max_retries: int = 10,
        timeout: float = 60.0,
        reuse_client: bool = True,
        callback_manager: Optional[CallbackManager] = None,
        default_headers: Optional[Dict[str, str]] = None,
        http_client: Optional[httpx.Client] = None,
        **kwargs: Any,
    ) -> None:
        additional_kwargs = additional_kwargs or {}
        if dimensions is not None:
            warnings.warn("Received dimensions argument. This is not supported yet.")
            additional_kwargs["dimensions"] = dimensions

        if embed_batch_size > MAX_EMBED_BATCH_SIZE:
            raise ValueError(
                f"embed_batch_size should be less than or equal to {MAX_EMBED_BATCH_SIZE}."
            )

        if "upstage_api_key" in kwargs:
            api_key = kwargs.pop("upstage_api_key")

        api_key, api_base = resolve_upstage_credentials(
            api_key=api_key, api_base=api_base
        )

        if "model_name" in kwargs:
            model = kwargs.pop("model_name")

        # if model endswith with "-query" or "-passage", remove the suffix and print a warning
        if model.endswith(("-query", "-passage")):
            model = model.rsplit("-", 1)[0]
            logger.warning(
                f"Model name should not end with '-query' or '-passage'. The suffix has been removed. "
                f"Model name: {model}"
            )

        super().__init__(
            embed_batch_size=embed_batch_size,
            dimensions=dimensions,
            callback_manager=callback_manager,
            model_name=model,
            additional_kwargs=additional_kwargs,
            api_key=api_key,
            api_base=api_base,
            max_retries=max_retries,
            reuse_client=reuse_client,
            timeout=timeout,
            default_headers=default_headers,
            **kwargs,
        )
        self._client = None
        self._aclient = None
        self._http_client = http_client

        self._query_engine, self._text_engine = get_engine(model)

    def class_name(cls) -> str:
        return "UpstageEmbedding"

    def _get_credential_kwargs(self, is_async: bool = False) -> Dict[str, Any]:
        return {
            "api_key": self.api_key,
            "base_url": self.api_base,
            "max_retries": self.max_retries,
            "timeout": self.timeout,
            "default_headers": self.default_headers,
            "http_client": self._async_http_client if is_async else self._http_client,
        }

    def _get_query_embedding(self, query: str) -> List[float]:
        """Get query embedding."""
        client = self._get_client()
        text = query.replace("\n", " ")
        return (
            client.embeddings.create(
                input=text, model=self._query_engine, **self.additional_kwargs
            )
            .data[0]
            .embedding
        )

    async def _aget_query_embedding(self, query: str) -> List[float]:
        """The asynchronous version of _get_query_embedding."""
        client = self._get_aclient()
        text = query.replace("\n", " ")
        return (
            (
                await client.embeddings.create(
                    input=text, model=self._query_engine, **self.additional_kwargs
                )
            )
            .data[0]
            .embedding
        )

    def _get_text_embedding(self, text: str) -> List[float]:
        """Get text embedding."""
        client = self._get_client()
        return (
            client.embeddings.create(
                input=text, model=self._text_engine, **self.additional_kwargs
            )
            .data[0]
            .embedding
        )

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """Asynchronously get text embedding."""
        client = self._get_aclient()
        return (
            (
                await client.embeddings.create(
                    input=text, model=self._text_engine, **self.additional_kwargs
                )
            )
            .data[0]
            .embedding
        )

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Get text embeddings."""
        client = self._get_client()
        batch_size = min(self.embed_batch_size, len(texts))
        texts = [text.replace("\n", " ") for text in texts]

        embeddings = []
        for i in range(0, len(texts), batch_size):
            batch = texts[i : i + batch_size]
            response = client.embeddings.create(
                input=batch, model=self._text_engine, **self.additional_kwargs
            )
            embeddings.extend([r.embedding for r in response.data])
        return embeddings

    async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Asynchronously get text embeddings."""
        client = self._get_aclient()
        batch_size = min(self.embed_batch_size, len(texts))
        texts = [text.replace("\n", " ") for text in texts]

        embeddings = []
        for i in range(0, len(texts), batch_size):
            batch = texts[i : i + batch_size]
            response = await client.embeddings.create(
                input=batch, model=self._text_engine, **self.additional_kwargs
            )
            embeddings.extend([r.embedding for r in response.data])
        return embeddings