Skip to content

Together

TogetherEmbedding #

Bases: BaseEmbedding

Source code in llama-index-integrations/embeddings/llama-index-embeddings-together/llama_index/embeddings/together/base.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class TogetherEmbedding(BaseEmbedding):
    api_base: str = Field(
        default="https://api.together.xyz/v1",
        description="The base URL for the Together API.",
    )
    api_key: str = Field(
        default="",
        description="The API key for the Together API. If not set, will attempt to use the TOGETHER_API_KEY environment variable.",
    )

    def __init__(
        self,
        model_name: str,
        api_key: Optional[str] = None,
        api_base: str = "https://api.together.xyz/v1",
        **kwargs: Any,
    ) -> None:
        api_key = api_key or os.environ.get("TOGETHER_API_KEY", None)
        super().__init__(
            model_name=model_name,
            api_key=api_key,
            api_base=api_base,
            **kwargs,
        )

    def _generate_embedding(self, text: str, model_api_string: str) -> Embedding:
        """Generate embeddings from Together API.

        Args:
            text: str. An input text sentence or document.
            model_api_string: str. An API string for a specific embedding model of your choice.

        Returns:
            embeddings: a list of float numbers. Embeddings correspond to your given text.
        """
        headers = {
            "accept": "application/json",
            "content-type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

        session = requests.session()
        while True:
            response = session.post(
                self.api_base.strip("/") + "/embeddings",
                headers=headers,
                json={"input": text, "model": model_api_string},
            )
            if response.status_code != 200:
                if response.status_code == 429:
                    """Rate limit exceeded, wait for reset"""
                    reset_time = int(response.headers.get("X-RateLimit-Reset", 0))
                    if reset_time > 0:
                        time.sleep(reset_time)
                        continue
                    else:
                        """Rate limit reset time has passed, retry immediately"""
                        continue

                """ Handle other non-200 status codes """
                raise ValueError(
                    f"Request failed with status code {response.status_code}: {response.text}"
                )

            return response.json()["data"][0]["embedding"]

    async def _agenerate_embedding(self, text: str, model_api_string: str) -> Embedding:
        """Async generate embeddings from Together API.

        Args:
            text: str. An input text sentence or document.
            model_api_string: str. An API string for a specific embedding model of your choice.

        Returns:
            embeddings: a list of float numbers. Embeddings correspond to your given text.
        """
        headers = {
            "accept": "application/json",
            "content-type": "application/json",
            "Authorization": f"Bearer {self.api_key}",
        }

        async with httpx.AsyncClient() as client:
            while True:
                response = await client.post(
                    self.api_base.strip("/") + "/embeddings",
                    headers=headers,
                    json={"input": text, "model": model_api_string},
                )
                if response.status_code != 200:
                    if response.status_code == 429:
                        """Rate limit exceeded, wait for reset"""
                        reset_time = int(response.headers.get("X-RateLimit-Reset", 0))
                        if reset_time > 0:
                            await asyncio.sleep(reset_time)
                            continue
                        else:
                            """Rate limit reset time has passed, retry immediately"""
                            continue

                    """ Handle other non-200 status codes"""
                    raise ValueError(
                        f"Request failed with status code {response.status_code}: {response.text}"
                    )

                return response.json()["data"][0]["embedding"]

    def _get_text_embedding(self, text: str) -> Embedding:
        """Get text embedding."""
        return self._generate_embedding(text, self.model_name)

    def _get_query_embedding(self, query: str) -> Embedding:
        """Get query embedding."""
        return self._generate_embedding(query, self.model_name)

    def _get_text_embeddings(self, texts: List[str]) -> List[Embedding]:
        """Get text embeddings."""
        return [self._generate_embedding(text, self.model_name) for text in texts]

    async def _aget_text_embedding(self, text: str) -> Embedding:
        """Async get text embedding."""
        return await self._agenerate_embedding(text, self.model_name)

    async def _aget_query_embedding(self, query: str) -> Embedding:
        """Async get query embedding."""
        return await self._agenerate_embedding(query, self.model_name)

    async def _aget_text_embeddings(self, texts: List[str]) -> List[Embedding]:
        """Async get text embeddings."""
        return await asyncio.gather(
            *[self._agenerate_embedding(text, self.model_name) for text in texts]
        )