28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151 | class IpexLLMEmbedding(BaseEmbedding):
max_length: int = Field(
default=DEFAULT_HUGGINGFACE_LENGTH, description="Maximum length of input.", gt=0
)
normalize: bool = Field(default=True, description="Normalize embeddings or not.")
query_instruction: Optional[str] = Field(
description="Instruction to prepend to query text."
)
text_instruction: Optional[str] = Field(
description="Instruction to prepend to text."
)
cache_folder: Optional[str] = Field(
description="Cache folder for Hugging Face files."
)
_model: Any = PrivateAttr()
_device: str = PrivateAttr()
def __init__(
self,
model_name: str = DEFAULT_HUGGINGFACE_EMBEDDING_MODEL,
max_length: Optional[int] = None,
query_instruction: Optional[str] = None,
text_instruction: Optional[str] = None,
normalize: bool = True,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
cache_folder: Optional[str] = None,
trust_remote_code: bool = False,
device: str = "cpu",
callback_manager: Optional[CallbackManager] = None,
**model_kwargs,
):
if device not in ["cpu", "xpu"] and not device.startswith("xpu:"):
raise ValueError(
"IpexLLMEmbedding currently only supports device to be 'cpu', 'xpu', "
f"or 'xpu:<device_id>', but you have: {device}."
)
device = device
cache_folder = cache_folder or get_cache_dir()
if model_name is None:
raise ValueError("The `model_name` argument must be provided.")
if not is_listed_model(model_name, BGE_MODELS):
bge_model_list_str = ", ".join(BGE_MODELS)
logger.warning(
"IpexLLMEmbedding currently only provides optimization for "
f"Hugging Face BGE models, which are: {bge_model_list_str}"
)
model = SentenceTransformer(
model_name,
device=device,
cache_folder=cache_folder,
trust_remote_code=trust_remote_code,
prompts={
"query": query_instruction
or get_query_instruct_for_model_name(model_name),
"text": text_instruction
or get_text_instruct_for_model_name(model_name),
},
**model_kwargs,
)
# Apply ipex-llm optimizations
model = _optimize_pre(self._model)
model = _optimize_post(self._model)
if device == "xpu":
# TODO: apply `ipex_llm.optimize_model`
model = model.half().to(device)
if max_length:
model.max_seq_length = max_length
else:
max_length = model.max_seq_length
super().__init__(
embed_batch_size=embed_batch_size,
callback_manager=callback_manager,
model_name=model_name,
max_length=max_length,
normalize=normalize,
query_instruction=query_instruction,
text_instruction=text_instruction,
)
self._model = model
self._device = device
@classmethod
def class_name(cls) -> str:
return "IpexLLMEmbedding"
def _embed(
self,
sentences: List[str],
prompt_name: Optional[str] = None,
) -> List[List[float]]:
"""Embed sentences."""
return self._model.encode(
sentences,
batch_size=self.embed_batch_size,
prompt_name=prompt_name,
normalize_embeddings=self.normalize,
).tolist()
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
return self._embed(query, prompt_name="query")
async def _aget_query_embedding(self, query: str) -> List[float]:
"""Get query embedding async."""
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
"""Get text embedding async."""
return self._get_text_embedding(text)
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
return self._embed(text, prompt_name="text")
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
return self._embed(texts, prompt_name="text")
|