Elasticsearch
ElasticsearchEmbedding #
Bases: BaseEmbedding
Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster.
In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co /guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co /guide/en/machine-learning/current/ml-nlp-deploy-models.html
Source code in llama-index-integrations/embeddings/llama-index-embeddings-elasticsearch/llama_index/embeddings/elasticsearch/base.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
from_es_connection
classmethod
#
from_es_connection(model_id: str, es_connection: Any, input_field: str = 'text_field') -> BaseEmbedding
Instantiate embeddings from an existing Elasticsearch connection.
This method provides a way to create an instance of the ElasticsearchEmbedding class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbedding instance.
Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to 'text_field'.
Returns: ElasticsearchEmbedding: An instance of the ElasticsearchEmbedding class.
Example
.. code-block:: python
from elasticsearch import Elasticsearch
from llama_index.embeddings.elasticsearch import ElasticsearchEmbedding
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Create Elasticsearch connection
es_connection = Elasticsearch(hosts=["localhost:9200"], basic_auth=("user", "password"))
# Instantiate ElasticsearchEmbedding using the existing connection
embeddings = ElasticsearchEmbedding.from_es_connection(
model_id,
es_connection,
input_field=input_field,
)
Source code in llama-index-integrations/embeddings/llama-index-embeddings-elasticsearch/llama_index/embeddings/elasticsearch/base.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
from_credentials
classmethod
#
from_credentials(model_id: str, es_url: str, es_username: str, es_password: str, input_field: str = 'text_field') -> BaseEmbedding
Instantiate embeddings from Elasticsearch credentials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id
|
str
|
The model_id of the model deployed in the Elasticsearch cluster. |
required |
input_field
|
str
|
The name of the key for the input text field in the document. Defaults to 'text_field'. |
'text_field'
|
es_url
|
str
|
(str): The Elasticsearch url to connect to. |
required |
es_username
|
str
|
(str): Elasticsearch username. |
required |
es_password
|
str
|
(str): Elasticsearch password. |
required |
Example
.. code-block:: python
from llama_index.embeddings.bedrock import ElasticsearchEmbedding
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
embeddings = ElasticsearchEmbedding.from_credentials(
model_id,
input_field=input_field,
es_url="foo",
es_username="bar",
es_password="baz",
)
Source code in llama-index-integrations/embeddings/llama-index-embeddings-elasticsearch/llama_index/embeddings/elasticsearch/base.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|