111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360 | class CohereEmbedding(MultiModalEmbedding):
"""CohereEmbedding uses the Cohere API to generate embeddings for text."""
# Instance variables initialized via Pydantic's mechanism
api_key: str = Field(description="The Cohere API key.")
truncate: str = Field(description="Truncation type - START/ END/ NONE")
input_type: Optional[str] = Field(
default=None,
description="Model Input type. If not provided, search_document and search_query are used when needed.",
)
embedding_type: str = Field(
description="Embedding type. If not provided float embedding_type is used when needed."
)
_client: cohere.Client = PrivateAttr()
_async_client: cohere.AsyncClient = PrivateAttr()
_base_url: Optional[str] = PrivateAttr()
_timeout: Optional[float] = PrivateAttr()
_httpx_client: Optional[httpx.Client] = PrivateAttr()
_httpx_async_client: Optional[httpx.AsyncClient] = PrivateAttr()
def __init__(
self,
# deprecated
cohere_api_key: Optional[str] = None,
api_key: Optional[str] = None,
model_name: str = "embed-english-v3.0",
truncate: str = "END",
input_type: Optional[str] = None,
embedding_type: str = "float",
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
callback_manager: Optional[CallbackManager] = None,
base_url: Optional[str] = None,
timeout: Optional[float] = None,
httpx_client: Optional[httpx.Client] = None,
httpx_async_client: Optional[httpx.AsyncClient] = None,
num_workers: Optional[int] = None,
**kwargs: Any,
):
"""
A class representation for generating embeddings using the Cohere API.
Args:
truncate (str): A string indicating the truncation strategy to be applied to input text. Possible values
are 'START', 'END', or 'NONE'.
input_type (Optional[str]): An optional string that specifies the type of input provided to the model.
This is model-dependent and could be one of the following: 'search_query',
'search_document', 'classification', or 'clustering'.
model_name (str): The name of the model to be used for generating embeddings. The class ensures that
this model is supported and that the input type provided is compatible with the model.
"""
# Validate model_name and input_type
if model_name not in VALID_MODEL_INPUT_TYPES:
raise ValueError(f"{model_name} is not a valid model name")
if input_type not in VALID_MODEL_INPUT_TYPES[model_name]:
raise ValueError(
f"{input_type} is not a valid input type for the provided model."
)
if embedding_type not in VALID_MODEL_EMBEDDING_TYPES[model_name]:
raise ValueError(
f"{embedding_type} is not a embedding type for the provided model."
)
if truncate not in VALID_TRUNCATE_OPTIONS:
raise ValueError(f"truncate must be one of {VALID_TRUNCATE_OPTIONS}")
super().__init__(
api_key=api_key or cohere_api_key,
model_name=model_name,
input_type=input_type,
embedding_type=embedding_type,
truncate=truncate,
embed_batch_size=embed_batch_size,
callback_manager=callback_manager,
num_workers=num_workers,
**kwargs,
)
self._client = None
self._async_client = None
self._base_url = base_url
self._timeout = timeout
self._httpx_client = httpx_client
self._httpx_async_client = httpx_async_client
def _get_client(self) -> cohere.Client:
if self._client is None:
self._client = cohere.Client(
api_key=self.api_key,
client_name="llama_index",
base_url=self._base_url,
timeout=self._timeout,
httpx_client=self._httpx_client,
)
return self._client
def _get_async_client(self) -> cohere.AsyncClient:
if self._async_client is None:
self._async_client = cohere.AsyncClient(
api_key=self.api_key,
client_name="llama_index",
base_url=self._base_url,
timeout=self._timeout,
httpx_client=self._httpx_async_client,
)
return self._async_client
@classmethod
def class_name(cls) -> str:
return "CohereEmbedding"
def _image_to_base64_data_url(self, image_input: Union[str, Path, BytesIO]) -> str:
"""Convert an image to a base64 Data URL."""
if isinstance(image_input, (str, Path)):
# If it's a string or Path, assume it's a file path
image_path = str(image_input)
file_extension = os.path.splitext(image_path)[1][1:].lower()
with open(image_path, "rb") as f:
image_data = f.read()
elif isinstance(image_input, BytesIO):
# If it's a BytesIO, use it directly
image = Image.open(image_input)
file_extension = image.format.lower()
image_input.seek(0) # Reset the BytesIO stream to the beginning
image_data = image_input.read()
else:
raise ValueError("Unsupported input type. Must be a file path or BytesIO.")
if self._validate_image_format(file_extension):
enc_img = base64.b64encode(image_data).decode("utf-8")
return f"data:image/{file_extension};base64,{enc_img}"
else:
raise ValueError(f"Unsupported image format: {file_extension}")
def _validate_image_format(self, file_type: str) -> bool:
"""Validate image format."""
return file_type.lower() in SUPPORTED_IMAGE_FORMATS
def _embed(self, texts: List[str], input_type: str) -> List[List[float]]:
"""Embed sentences using Cohere."""
client = self._get_client()
if self.model_name in V3_MODELS:
result = client.embed(
texts=texts,
input_type=self.input_type or input_type,
embedding_types=[self.embedding_type],
model=self.model_name,
truncate=self.truncate,
).embeddings
else:
result = client.embed(
texts=texts,
model=self.model_name,
embedding_types=[self.embedding_type],
truncate=self.truncate,
).embeddings
return getattr(result, self.embedding_type, None)
async def _aembed(self, texts: List[str], input_type: str) -> List[List[float]]:
"""Embed sentences using Cohere."""
async_client = self._get_async_client()
if self.model_name in V3_MODELS:
result = (
await async_client.embed(
texts=texts,
input_type=self.input_type or input_type,
embedding_types=[self.embedding_type],
model=self.model_name,
truncate=self.truncate,
)
).embeddings
else:
result = (
await async_client.embed(
texts=texts,
model=self.model_name,
embedding_types=[self.embedding_type],
truncate=self.truncate,
)
).embeddings
return getattr(result, self.embedding_type, None)
def _embed_image(self, image_path: ImageType, input_type: str) -> List[float]:
"""Embed images using Cohere."""
if self.model_name not in V3_MODELS:
raise ValueError(
f"{self.model_name} is not a valid multi-modal embedding model. Supported models are {V3_MODELS}"
)
client = self._get_client()
processed_image = self._image_to_base64_data_url(image_path)
return client.embed(
model=self.model_name,
images=[processed_image],
input_type=input_type,
).embeddings
async def _aembed_image(
self, image_path: ImageType, input_type: str
) -> List[float]:
"""Embed images using Cohere."""
if self.model_name not in V3_MODELS:
raise ValueError(
f"{self.model_name} is not a valid multi-modal embedding model. Supported models are {V3_MODELS}"
)
async_client = self._get_async_client()
processed_image = self._image_to_base64_data_url(image_path)
return (
await async_client.embed(
model=self.model_name,
images=[processed_image],
input_type=input_type,
)
).embeddings
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding. For query embeddings, input_type='search_query'."""
return self._embed([query], input_type="search_query")[0]
async def _aget_query_embedding(self, query: str) -> List[float]:
"""Get query embedding async. For query embeddings, input_type='search_query'."""
return (await self._aembed([query], input_type="search_query"))[0]
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
return self._embed([text], input_type="search_document")[0]
async def _aget_text_embedding(self, text: str) -> List[float]:
"""Get text embedding async."""
return (await self._aembed([text], input_type="search_document"))[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
return self._embed(texts, input_type="search_document")
async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
return await self._aembed(texts, input_type="search_document")
def _get_image_embedding(self, img_file_path: ImageType) -> Embedding:
"""Get image embedding."""
return self._embed_image(img_file_path, "image")[0]
async def _aget_image_embedding(self, img_file_path: ImageType) -> Embedding:
"""Get image embedding async."""
return (await self._aembed_image(img_file_path, "image"))[0]
|