33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 | class AzureOpenAIEmbedding(OpenAIEmbedding):
azure_endpoint: Optional[str] = Field(
default=None, description="The Azure endpoint to use.", validate_default=True
)
azure_deployment: Optional[str] = Field(
default=None, description="The Azure deployment to use.", validate_default=True
)
api_base: str = Field(
default="",
description="The base URL for Azure deployment.",
validate_default=True,
)
api_version: str = Field(
default="",
description="The version for Azure OpenAI API.",
validate_default=True,
)
azure_ad_token_provider: Optional[AnnotatedProvider] = Field(
default=None,
description="Callback function to provide Azure AD token.",
exclude=True,
)
use_azure_ad: bool = Field(
description="Indicates if Microsoft Entra ID (former Azure AD) is used for token authentication"
)
_azure_ad_token: Any = PrivateAttr(default=None)
_client: AzureOpenAI = PrivateAttr()
_aclient: AsyncAzureOpenAI = PrivateAttr()
def __init__(
self,
mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
additional_kwargs: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
api_version: Optional[str] = None,
# azure specific
azure_endpoint: Optional[str] = None,
azure_deployment: Optional[str] = None,
azure_ad_token_provider: Optional[AzureADTokenProvider] = None,
use_azure_ad: bool = False,
deployment_name: Optional[str] = None,
max_retries: int = 10,
reuse_client: bool = True,
callback_manager: Optional[CallbackManager] = None,
num_workers: Optional[int] = None,
# custom httpx client
http_client: Optional[httpx.Client] = None,
async_http_client: Optional[httpx.AsyncClient] = None,
**kwargs: Any,
):
azure_endpoint = get_from_param_or_env(
"azure_endpoint", azure_endpoint, "AZURE_OPENAI_ENDPOINT", ""
)
azure_deployment = resolve_from_aliases(
azure_deployment,
deployment_name,
)
super().__init__(
mode=mode,
model=model,
embed_batch_size=embed_batch_size,
additional_kwargs=additional_kwargs,
api_key=api_key,
api_version=api_version,
azure_endpoint=azure_endpoint,
azure_deployment=azure_deployment,
azure_ad_token_provider=azure_ad_token_provider,
use_azure_ad=use_azure_ad,
max_retries=max_retries,
reuse_client=reuse_client,
callback_manager=callback_manager,
http_client=http_client,
async_http_client=async_http_client,
num_workers=num_workers,
**kwargs,
)
@model_validator(mode="before")
@classmethod
def validate_env(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate necessary credentials are set."""
if (
values.get("api_base") == "https://api.openai.com/v1"
and values.get("azure_endpoint") is None
):
raise ValueError(
"You must set OPENAI_API_BASE to your Azure endpoint. "
"It should look like https://YOUR_RESOURCE_NAME.openai.azure.com/"
)
if values.get("api_version") is None:
raise ValueError("You must set OPENAI_API_VERSION for Azure OpenAI.")
return values
def _get_client(self) -> AzureOpenAI:
if not self.reuse_client:
return AzureOpenAI(**self._get_credential_kwargs())
if self._client is None:
self._client = AzureOpenAI(**self._get_credential_kwargs())
return self._client
def _get_aclient(self) -> AsyncAzureOpenAI:
if not self.reuse_client:
return AsyncAzureOpenAI(**self._get_credential_kwargs(is_async=True))
if self._aclient is None:
self._aclient = AsyncAzureOpenAI(
**self._get_credential_kwargs(is_async=True)
)
return self._aclient
def _get_credential_kwargs(self, is_async: bool = False) -> Dict[str, Any]:
if self.use_azure_ad:
self._azure_ad_token = refresh_openai_azuread_token(self._azure_ad_token)
self.api_key = self._azure_ad_token.token
else:
self.api_key = get_from_param_or_env(
"api_key", self.api_key, "AZURE_OPENAI_API_KEY"
)
return {
"api_key": self.api_key,
"azure_ad_token_provider": self.azure_ad_token_provider,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.azure_deployment,
"api_version": self.api_version,
"default_headers": self.default_headers,
"http_client": self._async_http_client if is_async else self._http_client,
}
@classmethod
def class_name(cls) -> str:
return "AzureOpenAIEmbedding"
|