Workflow
AgentWorkflow #
Bases: Workflow
, PromptMixin
A workflow for managing multiple agents with handoffs.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
get_tools
async
#
get_tools(agent_name: str, input_str: Optional[str] = None) -> Sequence[AsyncBaseTool]
Get tools for the given agent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
init_run
async
#
init_run(ctx: Context, ev: StartEvent) -> AgentInput
Sets up the workflow and validates inputs.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|
setup_agent
async
#
setup_agent(ctx: Context, ev: AgentInput) -> AgentSetup
Main agent handling logic.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
run_agent_step
async
#
run_agent_step(ctx: Context, ev: AgentSetup) -> AgentOutput
Run the agent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
call_tool
async
#
call_tool(ctx: Context, ev: ToolCall) -> ToolCallResult
Calls the tool and handles the result.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
aggregate_tool_results
async
#
aggregate_tool_results(ctx: Context, ev: ToolCallResult) -> Union[AgentInput, StopEvent, None]
Aggregate tool results and return the next agent input.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
from_tools_or_functions
classmethod
#
from_tools_or_functions(tools_or_functions: List[Union[BaseTool, Callable]], llm: Optional[LLM] = None, system_prompt: Optional[str] = None, state_prompt: Optional[Union[str, BasePromptTemplate]] = None, initial_state: Optional[dict] = None, timeout: Optional[float] = None) -> AgentWorkflow
Initializes an AgentWorkflow from a list of tools or functions.
The workflow will be initialized with a single agent that uses the provided tools or functions.
If the LLM is a function calling model, the workflow will use the FunctionAgent. Otherwise, it will use the ReActAgent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
|
BaseWorkflowAgent #
Bases: BaseModel
, PromptMixin
, ABC
Base class for all agents, combining config and logic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the agent |
required |
description
|
str
|
The description of what the agent does and is responsible for |
required |
system_prompt
|
str | None
|
The system prompt for the agent |
None
|
tools
|
List[BaseTool] | None
|
The tools that the agent can use |
None
|
tool_retriever
|
ObjectRetriever | None
|
The tool retriever for the agent, can be provided instead of tools |
None
|
can_handoff_to
|
List[str] | None
|
The agent names that this agent can hand off to |
None
|
llm
|
LLM
|
The LLM that the agent uses |
<dynamic>
|
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
validate_tools #
Validate tools.
If tools are not of type BaseTool, they will be converted to FunctionTools. This assumes the inputs are tools or callable functions.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
take_step
abstractmethod
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the agent.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
91 92 93 94 95 96 97 98 99 |
|
handle_tool_call_results
abstractmethod
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
101 102 103 104 105 |
|
finalize
abstractmethod
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the agent's execution.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
107 108 109 110 111 |
|
FunctionAgent #
Bases: BaseWorkflowAgent
Function calling agent implementation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scratchpad_key
|
str
|
|
'scratchpad'
|
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
take_step
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the function calling agent.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
handle_tool_call_results
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results for function calling agent.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
finalize
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the function calling agent.
Adds all in-progress messages to memory.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
ReActAgent #
Bases: BaseWorkflowAgent
React agent implementation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reasoning_key
|
str
|
|
'current_reasoning'
|
output_parser
|
ReActOutputParser
|
The react output parser |
<llama_index.core.agent.react.output_parser.ReActOutputParser object at 0x7f250ea27da0>
|
formatter
|
ReActChatFormatter
|
The react chat formatter to format the reasoning steps and chat history into an llm input. |
ReActChatFormatter(system_header='You are designed to help with a variety of tasks, from answering questions to providing summaries to other types of analyses.\n\n## Tools\n\nYou have access to a wide variety of tools. You are responsible for using the tools in any sequence you deem appropriate to complete the task at hand.\nThis may require breaking the task into subtasks and using different tools to complete each subtask.\n\nYou have access to the following tools:\n{tool_desc}\n\nHere is some context to help you answer the question and plan:\n{context}\n\n\n## Output Format\n\nPlease answer in the same language as the question and use the following format:\n\n```\nThought: The current language of the user is: (user\'s language). I need to use a tool to help me answer the question.\nAction: tool name (one of {tool_names}) if using a tool.\nAction Input: the input to the tool, in a JSON format representing the kwargs (e.g. {{"input": "hello world", "num_beams": 5}})\n```\n\nPlease ALWAYS start with a Thought.\n\nNEVER surround your response with markdown code markers. You may use code markers within your response if you need to.\n\nPlease use a valid JSON format for the Action Input. Do NOT do this {{\'input\': \'hello world\', \'num_beams\': 5}}.\n\nIf this format is used, the tool will respond in the following format:\n\n```\nObservation: tool response\n```\n\nYou should keep repeating the above format till you have enough information to answer the question without using any more tools. At that point, you MUST respond in one of the following two formats:\n\n```\nThought: I can answer without using any more tools. I\'ll use the user\'s language to answer\nAnswer: [your answer here (In the same language as the user\'s question)]\n```\n\n```\nThought: I cannot answer the question with the provided tools.\nAnswer: [your answer here (In the same language as the user\'s question)]\n```\n\n## Current Conversation\n\nBelow is the current conversation consisting of interleaving human and assistant messages.\n', context='some context', observation_role=<MessageRole.USER: 'user'>)
|
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
take_step
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
handle_tool_call_results
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results for React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
finalize
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
AgentInput #
Bases: Event
LLM input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
list[ChatMessage]
|
|
required |
current_agent_name
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
8 9 10 11 12 |
|
AgentStream #
Bases: Event
Agent stream.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
str
|
|
required |
response
|
str
|
|
required |
current_agent_name
|
str
|
|
required |
tool_calls
|
list[ToolSelection]
|
|
required |
raw
|
Any
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
22 23 24 25 26 27 28 29 |
|
AgentOutput #
Bases: Event
LLM output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response
|
ChatMessage
|
|
required |
tool_calls
|
list[ToolSelection]
|
|
required |
raw
|
Any
|
|
required |
current_agent_name
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
32 33 34 35 36 37 38 39 40 41 |
|
ToolCall #
Bases: Event
All tool calls are surfaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tool_name
|
str
|
|
required |
tool_kwargs
|
dict
|
|
required |
tool_id
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
44 45 46 47 48 49 |
|
ToolCallResult #
Bases: ToolCall
Tool call result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tool_output
|
ToolOutput
|
|
required |
return_direct
|
bool
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
52 53 54 55 56 |
|