Agent Classes#
AgentWorkflow #
Bases: Workflow
, PromptMixin
A workflow for managing multiple agents with handoffs.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
|
get_tools
async
#
get_tools(agent_name: str, input_str: Optional[str] = None) -> Sequence[AsyncBaseTool]
Get tools for the given agent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
init_run
async
#
init_run(ctx: Context, ev: StartEvent) -> AgentInput
Sets up the workflow and validates inputs.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
setup_agent
async
#
setup_agent(ctx: Context, ev: AgentInput) -> AgentSetup
Main agent handling logic.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
|
run_agent_step
async
#
run_agent_step(ctx: Context, ev: AgentSetup) -> AgentOutput
Run the agent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
call_tool
async
#
call_tool(ctx: Context, ev: ToolCall) -> ToolCallResult
Calls the tool and handles the result.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
aggregate_tool_results
async
#
aggregate_tool_results(ctx: Context, ev: ToolCallResult) -> Union[AgentInput, StopEvent, None]
Aggregate tool results and return the next agent input.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
|
from_tools_or_functions
classmethod
#
from_tools_or_functions(tools_or_functions: List[Union[BaseTool, Callable]], llm: Optional[LLM] = None, system_prompt: Optional[str] = None, state_prompt: Optional[Union[str, BasePromptTemplate]] = None, initial_state: Optional[dict] = None, timeout: Optional[float] = None, verbose: bool = False) -> AgentWorkflow
Initializes an AgentWorkflow from a list of tools or functions.
The workflow will be initialized with a single agent that uses the provided tools or functions.
If the LLM is a function calling model, the workflow will use the FunctionAgent. Otherwise, it will use the ReActAgent.
Source code in llama-index-core/llama_index/core/agent/workflow/multi_agent_workflow.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
|
BaseWorkflowAgent #
Bases: BaseModel
, PromptMixin
, ABC
Base class for all agents, combining config and logic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the agent |
'Agent'
|
description
|
str
|
The description of what the agent does and is responsible for |
'An agent that can perform a task'
|
system_prompt
|
str | None
|
The system prompt for the agent |
None
|
tools
|
List[Union[BaseTool, Callable]] | None
|
The tools that the agent can use |
None
|
tool_retriever
|
ObjectRetriever | None
|
The tool retriever for the agent, can be provided instead of tools |
None
|
can_handoff_to
|
List[str] | None
|
The agent names that this agent can hand off to |
None
|
llm
|
LLM
|
The LLM that the agent uses |
<dynamic>
|
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
validate_tools #
Validate tools.
If tools are not of type BaseTool, they will be converted to FunctionTools. This assumes the inputs are tools or callable functions.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
take_step
abstractmethod
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the agent.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
97 98 99 100 101 102 103 104 105 |
|
handle_tool_call_results
abstractmethod
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
107 108 109 110 111 |
|
finalize
abstractmethod
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the agent's execution.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
113 114 115 116 117 |
|
run
abstractmethod
#
run(user_msg: Optional[Union[str, ChatMessage]] = None, chat_history: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, ctx: Optional[Context] = None, stepwise: bool = False, checkpoint_callback: Optional[CheckpointCallback] = None, **workflow_kwargs: Any) -> WorkflowHandler
Run the agent.
Source code in llama-index-core/llama_index/core/agent/workflow/base_agent.py
119 120 121 122 123 124 125 126 127 128 129 130 |
|
FunctionAgent #
Bases: SingleAgentRunnerMixin
, BaseWorkflowAgent
Function calling agent implementation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scratchpad_key
|
str
|
|
'scratchpad'
|
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
take_step
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the function calling agent.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
handle_tool_call_results
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results for function calling agent.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
finalize
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the function calling agent.
Adds all in-progress messages to memory.
Source code in llama-index-core/llama_index/core/agent/workflow/function_agent.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
ReActAgent #
Bases: SingleAgentRunnerMixin
, BaseWorkflowAgent
React agent implementation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reasoning_key
|
str
|
|
'current_reasoning'
|
output_parser
|
ReActOutputParser
|
The react output parser |
<llama_index.core.agent.react.output_parser.ReActOutputParser object at 0x7e4b4abb6f00>
|
formatter
|
ReActChatFormatter
|
The react chat formatter to format the reasoning steps and chat history into an llm input. |
<dynamic>
|
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
take_step
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
handle_tool_call_results
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results for React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
finalize
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the React agent.
Source code in llama-index-core/llama_index/core/agent/workflow/react_agent.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
CodeActAgent #
Bases: SingleAgentRunnerMixin
, BaseWorkflowAgent
A workflow agent that can execute code.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scratchpad_key
|
str
|
|
'scratchpad'
|
code_execute_fn
|
Callable | Awaitable
|
The function to execute code. Required in order to execute code generated by the agent. The function protocol is as follows: async def code_execute_fn(code: str) -> Dict[str, Any] |
required |
code_act_system_prompt
|
str | BasePromptTemplate
|
The system prompt for the code act agent. |
'You are a helpful AI assistant that can write and execute Python code to solve problems.\n\nYou will be given a task to perform. You should output:\n- Python code wrapped in <execute>...</execute> tags that provides the solution to the task, or a step towards the solution. Any output you want to extract from the code should be printed to the console.\n- Text to be shown directly to the user, if you want to ask for more information or provide the final answer.\n- If the previous code execution can be used to respond to the user, then respond directly (typically you want to avoid mentioning anything related to the code execution in your response).\n\n## Response Format:\nExample of proper code format:\n<execute>\nimport math\n\ndef calculate_area(radius):\n return math.pi * radius**2\n\n# Calculate the area for radius = 5\narea = calculate_area(5)\nprint(f"The area of the circle is {area:.2f} square units")\n</execute>\n\nIn addition to the Python Standard Library and any functions you have already written, you can use the following functions:\n{tool_descriptions}\n\nVariables defined at the top level of previous code snippets can be also be referenced in your code.\n\n## Final Answer Guidelines:\n- When providing a final answer, focus on directly answering the user\'s question\n- Avoid referencing the code you generated unless specifically asked\n- Present the results clearly and concisely as if you computed them directly\n- If relevant, you can briefly mention general methods used, but don\'t include code snippets in the final answer\n- Structure your response like you\'re directly answering the user\'s query, not explaining how you solved it\n\nReminder: Always place your Python code between <execute>...</execute> tags when you want to run code. You can include explanations and other content outside these tags.\n'
|
Source code in llama-index-core/llama_index/core/agent/workflow/codeact_agent.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
take_step
async
#
take_step(ctx: Context, llm_input: List[ChatMessage], tools: Sequence[AsyncBaseTool], memory: BaseMemory) -> AgentOutput
Take a single step with the code act agent.
Source code in llama-index-core/llama_index/core/agent/workflow/codeact_agent.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
handle_tool_call_results
async
#
handle_tool_call_results(ctx: Context, results: List[ToolCallResult], memory: BaseMemory) -> None
Handle tool call results for code act agent.
Source code in llama-index-core/llama_index/core/agent/workflow/codeact_agent.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
finalize
async
#
finalize(ctx: Context, output: AgentOutput, memory: BaseMemory) -> AgentOutput
Finalize the code act agent.
Adds all in-progress messages to memory.
Source code in llama-index-core/llama_index/core/agent/workflow/codeact_agent.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
AgentInput #
Bases: Event
LLM input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
list[ChatMessage]
|
|
required |
current_agent_name
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
8 9 10 11 12 |
|
AgentStream #
Bases: Event
Agent stream.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
str
|
|
required |
response
|
str
|
|
required |
current_agent_name
|
str
|
|
required |
tool_calls
|
list[ToolSelection]
|
|
required |
raw
|
Any
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
22 23 24 25 26 27 28 29 |
|
AgentOutput #
Bases: Event
LLM output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response
|
ChatMessage
|
|
required |
tool_calls
|
list[ToolSelection]
|
|
required |
raw
|
Any
|
|
required |
current_agent_name
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
32 33 34 35 36 37 38 39 40 41 |
|
ToolCall #
Bases: Event
All tool calls are surfaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tool_name
|
str
|
|
required |
tool_kwargs
|
dict
|
|
required |
tool_id
|
str
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
44 45 46 47 48 49 |
|
ToolCallResult #
Bases: ToolCall
Tool call result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tool_output
|
ToolOutput
|
|
required |
return_direct
|
bool
|
|
required |
Source code in llama-index-core/llama_index/core/agent/workflow/workflow_events.py
52 53 54 55 56 |
|